首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg2+离子对Sr2Al2SiO7∶Eu2+荧光体微结构及发光性能的影响   总被引:1,自引:1,他引:0  
采用复合胶体喷雾工艺制备了Sr2Al2SiO7∶Eu2 荧光体及掺入Mg离子后Sr2-xMgxAl2SiO7∶Eu2 (x=0.1, 0.2, 0.4, 0.6, 0.8, 1.0)荧光体.XRD分析及晶格常数计算结果表明,Eu2 离子部分取代Sr2 格位进入Sr2Al2SiO7晶格.Sr2Al2SiO7∶Eu2 荧光体激发谱由峰值位于326nm附近的宽带构成,属于Eu2 的4f→5d 跃迁吸收带;发射光谱主峰位于约500nm,属于Eu2 离子4f65d→4f7跃迁导致的宽带发射.XRD结果表明Mg2 添加浓度从x=0.1~1.0增加,Mg2 离子以取代离子形式进入Sr2Al2SiO7晶格.Mg2 离子添加浓度x=0.1时对Sr2Al2SiO7∶Eu2 发射光谱影响不大,Sr1.9Mg0.1Al2SiO7∶Eu2 0.02发射主峰仍位于500nm;x>0.2后,Mg2 离子取代Sr2 离子使晶体场强度减弱,Eu2 离子5d能级晶场劈裂减小,导致Sr2-xMgxAl2SiO7∶Eu2 发射峰蓝移至460nm.  相似文献   

2.
新型黄绿色发光材料Sr2MgSi3O9:Ce3+,Tb3+的合成及光谱分析   总被引:1,自引:0,他引:1  
采用凝胶-燃烧法在活性炭弱还原气氛下成功合成了新型荧光粉Sr2MgSi3O9 :Tb3+、Sr2MgSi3O9:Ce3+,Tb3+,用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明,所合成的发光材料与Sr2MgSi2O7具有相似的晶体结构,同属四方晶系.样品一次颗粒近似球形,粒径在100nm左右.Sr2MgSi3O9:Tb3+的激发光谱为一位于249nm的宽带,发射光谱主要由473、491、547、585nm等一系列发射峰组成,其中473nm(5D3→<7F3)为主发射峰,547nm(5D4→7F5)为次发射峰;样品Sr1.955MgSi3O9:Tb3+0.04,Ce3+0.005的激发光谱由峰值分别位于249和335nm的双激发带组成,其中后者为主激发带.在335nm激发下,其发射光谱由两部分组成,其中400nm附近的带状发射对应于Ce3+的发射,而491、547、588nm处的发射峰归属为Tb3+的5+D4→7FJ(J=6,5,4)跃迁发射,最强峰位于547nm,对应Tb3+的5D4→7F5跃迁.此外,探讨了Ce3+掺杂量对样品发光亮度的影响,发现Ce3+可以把能量传递给Tb3+,对Tb3+起到敏化作用.  相似文献   

3.
采用水热蒸发法制备了KCl∶Ce3+荧光粉。测量并分析了材料在室温下的真空紫外激发光谱及相应的发射光谱。结果表明激发谱显示6个峰,峰位分别为149、194、206、219、233和251nm。其中149nm的激发峰是基质吸收引起的;194、206、219、233和251nm是Ce3+离子的4f→5d跃迁引起的。发射峰显示双峰结构,峰位分别是311和326nm。此峰对应于Ce3+离子的5d→4f(2F5/2,2F7/2)跃迁。  相似文献   

4.
采用复合胶体喷雾工艺制备了Sr2Al2SiO7:Eu^2+荧光体及掺入Mg离子后Sr2-xMgxAl2SiO7:Eu^2+(x=0.1,0.2,0.4,0.6,0.8,1.0)荧光体。XRD分析及晶格常数计算结果表明,Eu^2+离子部分取代Sr^2+格位进入Sr2Al2SiO7晶格。Sr2Al2SiO7:Eu^2+荧光体激发谱由峰值位于326nm附近的宽带构成,属于Eu^2+的4f→5d跃迁吸收带;发射光谱主峰位于约500nm,属于Eu^2+离子4f^65d→4f^7跃迁导致的宽带发射。XRD结果表明Mg^2+添加浓度从x=0.1~1.0增加,Mg^2+离子以取代离子形式进入Sr2Al2SiO7晶格。Mg^2+离子添加浓度x=0.1时对Sr2Al2SiO7:Eu^2+发射光谱影响不大,Sr1.9Mg0.1Al2SiO7:Eu0.02^2+发射主峰仍位于500nm;z〉0.2后,Mg^2+离子取代Sr^2+离子使晶体场强度减弱,Eu^2+离子5d能级晶场劈裂减小,导致Sr2-xMgxAl2SiO7:Eu^2+发射峰蓝移至460nm。  相似文献   

5.
《功能材料》2012,43(16)
采用水热蒸发法制备了KCl∶Ce3+荧光粉。测量并分析了材料在室温下的真空紫外激发光谱及相应的发射光谱。结果表明激发谱显示6个峰,峰位分别为149、194、206、219、233和251nm。其中149nm的激发峰是基质吸收引起的;194、206、219、233和251nm是Ce3+离子的4f→5d跃迁引起的。发射峰显示双峰结构,峰位分别是311和326nm。此峰对应于Ce3+离子的5d→4f(2F5/2,2F7/2)跃迁。  相似文献   

6.
采用凝胶-燃烧法合成了Sr2SiO4∶Eu3+红色荧光粉,利用XRD、SEM、PL对样品进行了结构、形貌及发光性能表征。结果表明,所得样品为单斜晶系结构,呈粒径为0.1~0.3μm、长1μm左右的纤维状小颗粒。在波长394nm的紫外激发下,样品发射光谱由位于红光区的5个主要荧光发射峰组成,峰值分别位于578nm、590nm、612nm、650nm和700nm,对应Eu3+的5 D0→7F0、5 D0→7F1、5 D0→7F2、5 D0→7F3和5 D0→7F4特征跃迁发射,612nm处的发射最强,是一种适用于白光LED的红色荧光粉。  相似文献   

7.
甘氨酸燃烧法合成Sr2CeO4及其发光性质研究   总被引:2,自引:0,他引:2  
为制备具有优良性能的蓝色荧光粉,首次采用甘氨酸-硝酸盐燃烧法合成了Sr2CeO4,利用热重-差热分析仪、X射线粉末衍射仪、扫描电镜等技术对其形成过程、物相结构、形貌粒度、发光性质进行了研究.结果表明:燃烧后的前驱物经800℃焙烧已有目标产物Sr2CeO4生成,1100℃时可得到较纯正交晶系的Sr2CeO4相.颗粒的形貌为不规则球形,平均粒径在80 nm左右.发光性质研究表明:Sr2CeO4荧光粉的激发光谱是宽带双峰结构,此宽带属于Ce4+的电荷迁移带,两个峰分别位于305 nm和348 nm,后者为主峰.用348 nm紫外光激发样品,发出明亮的蓝光,其发射光谱也是一个宽带,最大峰位于470 nm,此峰属于Ce4+的f→t1g跃迁.发光强度在800~1100℃随温度升高而增强.  相似文献   

8.
本文报道了Pr掺杂SrBi2Ta2O9(SBTO)铋层状铁电材料的光致发光特性。通过适量的Pr掺杂制得的SrBi2Ta2O9陶瓷样品在室温下具有很强的红光和绿光发射。光致发光激发谱显示样品具有蓝光激发特性,该激发带对应Pr3+离子的基态3H4到激发态3PJ(J=0,1,2)的跃迁吸收。在蓝光激发下,样品具有宽带发射,发射峰对应Pr3+离子f-f辐射跃迁中:3P1→3H5(532 nm),3P0→3H5(546 nm),1D2→3H4(600 nm),3P0→3H6(620 nm),3P0→3F2(656 nm)和3P0→3F4(743 nm)跃迁。Pr掺杂SBTO样品蓝光激发的光致发光特性将可能使其在白光LED及其相关器件中得到应用。  相似文献   

9.
蓝色长余辉发光材料Sr2MgSi2O7:Eu2+,Ln3+的合成和性质   总被引:1,自引:0,他引:1  
翟永清  孟媛  曹丽莉  周健 《材料导报》2007,21(8):125-128
采用凝胶-燃烧法合成了系列稀土掺杂的Sr2MgSi2O7:Eu2 0.02,Ln3 0.04(Ln=La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm)蓝色长余辉发光材料,用X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明:掺杂了不同稀土离子的Sr2MgSi2O7:Eu2 ,Ln3 的晶体结构均为四方晶系结构;其激发、发射光谱的峰形、峰位基本无变化,激发光谱为一宽带,最大激发峰位于402nm处,次激发峰位于415nm处,与高温固相法制得的样品相比,激发峰发生了明显的红移;发射光谱也为一宽带,最大发射峰位于468nm附近,是由典型的Eu2 的4f5d-4f跃迁导致的,不同之处在于其激发光谱、发射光谱强度与余辉性质有所差别,其中Dy3 是最理想的共掺杂稀土离子,Sr2MgSi2O7:Eu2 ,Dy3 的亮度最高、余辉时间最长,可达5h以上;而Sr2MgSi2O7:Eu2 ,Sm3 的发光强度最低,余辉时间最短.  相似文献   

10.
采用微波辐射法快速合成了Dy3+掺杂SrMoO4黄色荧光粉。运用X射线衍射仪及荧光分光光度计对该荧光粉的物相结构及发光性能等进行了分析和表征。结果表明,所得的样品为四方晶系、白钨矿结构的钼酸盐,空间群为I41/a。样品的激发光谱是由位于200~340 nm的一个宽带和340~500 nm的一系列尖峰构成。宽带吸收与Mo-O及Dy-O的电荷转移过程有关,最强峰位于284 nm左右。340 nm以后的吸收峰是由于Dy3+离子的f-f跃迁引起的。发射光谱由两个窄带组成:主峰位于576 nm处的窄带属于Dy3+离子的4F9/2→6H13/2电偶极跃迁发射;另一个窄带位于480 nm左右,属于Dy3+离子的4F9/2→6H15/2跃迁发射,前者的强度远大于后者,因而,样品发黄光。同时,考察了Dy3+浓度、反应时间等对样品发光性能的影响。  相似文献   

11.
以氯化铈和氟化钠为原料制备铽掺杂的氟化铈纳米颗粒,采用水热法,在不同保温时间下制得3种样品。通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见光谱仪(UV)、荧光光谱仪(PL)对样品进行表征。XRD分析结果表明:制备的CeF3:Tb3+纳米颗粒为六方晶系结构,SEM证实不同的保温时间,样品的形貌差别较大。在310nm的光激发下,350nm处宽而强的发射峰对应三价Ce3+离子的特征发射峰,位于540nm处来源于Tb3+离子的特征发射(5 D4-7F5),在482nm处的发射峰对应于Tb3+离子的5 D4-7F6的跃迁。  相似文献   

12.
尚进  邱克辉  鲁雪光  赵昆  张莉 《中国测试》2013,(2):69-72,105
采用高温固相法在还原气氛下合成橙红色荧光粉(Sr1-xBa)x3-ySiO5∶y Eu2+,并用X射线衍射仪和荧光分光光度计对合成的样品进行表征。结果表明:合成样品的晶体结构与Sr3SiO5相同,(Sr1-xBa)x3-ySiO5∶y Eu2+的荧光光谱为宽带谱,激发峰发射主峰分别位于365nm和592~609nm。随着Eu2+和Ba2+掺杂浓度的不同,样品的热稳定性和发射峰也发生了相应的变化。最终,并对其机理进行简单讨论。  相似文献   

13.
采用高温固相法合成了Eu激活的掺杂锶的莫来石发光材料.通过XRD分析合成后样品的组成.利用荧光分光光度计测量激发光谱和发射光谱并分析发光机理.结果表明,纯莫来石的激发光谱为位于300nm的单峰,对应Eu3+的7F0-5H3跃迁,而掺杂锶后所得激发光谱主峰分别位于260和328nm,为典型的宽波段双峰结构,分别来自于Eu2+的4f7(8S)→4f65d1(t2g)和4f7(4S)→4f65d1(eg)跃迁.机理分析表明,掺杂Sr形成的SrAl2Si2O8中,Sr2+占据Al3+位置后导致出现负电空位,经基质作用传递给Eu3+,使Eu3+还原为Eu2+,使体系出现Eu2+的特征发光.  相似文献   

14.
KBaPO4:Tb3+材料制备及其发光特性   总被引:2,自引:0,他引:2  
采用高温固相法合成了KBaPO4:Tb3+绿色发光荧光粉,并研究了材料的发光性质.KBaPO4:Tb3+材料呈多峰发射,发射峰位于437、490、545、586和622 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f 7-5d1的宽带吸收(200~330 nm)和4f-4f电子吸收(330~400 nm)组成,主峰为380 nm.研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-,及敏化剂Ce3+对KBaPO4:Tb3+材料发射强度的影响.结果显示,调节激活剂浓度、添加电荷补偿剂或敏化剂均可在很大程度上提高材料的发射强度.上述结果表明KBaPO4:Tb3+材料是一种很好的近紫外光激发型高效绿色发光荧光粉.  相似文献   

15.
助熔剂和还原气氛对掺铕硅酸锶荧光粉发光性能的影响   总被引:1,自引:0,他引:1  
采用传统高温固相反应法制备了掺铕硅酸锶荧光粉。在近紫外光激发下,Sr2SiO4:Eu2+发出明亮的黄绿光。其发射光谱由峰值分别位于490nm和550nm的两个属于Eu2+的5d→4f发射带叠加组成。当Eu2+浓度为0.005mol时,发光最强。研究了不同助熔剂(NH4F、NH4Cl、NaF、Li2CO3、H3BO3)及不同还原气氛(5%H2-95%N2混合气体和C粒)对Eu2+掺杂的Sr2SiO4发光性能的影响。结果表明添加助熔剂后大大降低了烧结温度,并不同程度地提高了2个发射峰的强度。结果还表明5%H2-95%N2混合气体还原效果比C粒好。  相似文献   

16.
采用共沉淀法合成CaO:Eu3+红色荧光粉,探讨了Eu3+离子的掺杂量、煅烧温度和煅烧时间对样品发光性能的影响,并利用X-射线衍射仪(XRD)、扫描电镜(SEM)和荧光光度仪(PL-PLE)等仪器对样品的性能进行表征.结果表明:掺杂Eu3+作为发光中心进入到CaO基质的晶格中,其最佳掺杂量为1.5%(摩尔含量);最佳煅烧温度和煅烧时间分别为1100℃和4h,样品的激发峰位于200~290nm之间,对应于Eu3+-O2-的电荷迁移跃迁(CTB),属于宽带激发;Eu3+离子主要占据严格对称的格位,其最大发射峰位于592nm,对应于5D0→7F1磁偶极跃迁,属于红色发光.  相似文献   

17.
采用高温固相法合成了Sr2Al2SiO7∶Re(Re=Eu2+,Ce3+)荧光粉,研究了Eu2+和Ce3+在该基质中的发光特性,以及Eu2+、Ce3+共掺时的能量传递现象。研究表明Sr2Al2SiO7∶Eu2+激发光谱呈宽带激发,最大发射峰位于513nm,Eu2+最佳掺杂浓度为5%(摩尔分数)。Sr2Al2SiO7∶Ce3+有两个激发峰,分别位于300和337nm,发射峰位于406nm,当Ce3+浓度达到2%(摩尔分数)时发射强度最大。Eu2+和Ce3+在该体系共掺时存在Ce3+到Eu2+的有效能量传递,有利于提高体系的发光效率。  相似文献   

18.
采用高温固相法合成了KCaPO4:Tb3+绿色荧光粉,并研究了材料的发光性质.KCaPO4:Tb什材料呈多峰发射,发射峰为437、490、545、587和623nm,分别对应Tb3+的5D3→F4和5D4→FJ=615,4,3跃迁发射,主峰为545nm;监测545nm发射峰,所得激发光谱由4f7 5d1宽带吸收(200...  相似文献   

19.
采用高温固相法合成了Sr5 (BO3)3Cl:Eu3+新型红色发光材料,并对其结构和发光特性进行了研究.X射线衍射测试表明合成材料为纯相Sr5 (BO3)3Cl晶体.材料的主发射峰位于587,596,613nm和626nm,对应Eu3+的5 D0 →7F1,7F2辐射跃迁.监测626nm发射峰,激发光谱主峰位于392nm,可被InGaN管芯有效激发.通过时间分辨光谱测得Eu3+离子5 D0能级的荧光寿命约为2.28ms.研究了Eu3+离子掺杂浓度对Sr5(BO3)3Cl:Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为16%(摩尔分数).计算了Eu3+离子浓度猝灭的临界距离为1.46nm.测量了不同Eu3+浓度样品的色坐标,均位于色品图红光区,符合NTSC标准.  相似文献   

20.
采用高温固相法合成了Sr5(BO3)3Cl:Eu3+新型红色发光材料,并对其结构和发光特性进行了研究。X射线衍射测试表明合成材料为纯相Sr5(BO3)3Cl晶体。材料的主发射峰位于587,596,613nm和626nm,对应Eu3+的5 D0→7F1,7F2辐射跃迁。监测626nm发射峰,激发光谱主峰位于392nm,可被InGaN管芯有效激发。通过时间分辨光谱测得Eu3+离子5 D0能级的荧光寿命约为2.28ms。研究了Eu3+离子掺杂浓度对Sr5(BO3)3Cl:Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为16%(摩尔分数)。计算了Eu3+离子浓度猝灭的临界距离为1.46nm。测量了不同Eu3+浓度样品的色坐标,均位于色品图红光区,符合NTSC标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号