共查询到20条相似文献,搜索用时 0 毫秒
1.
采用固相法制备LiMn0.98Mg0.02PO4/C材料,以葡萄糖为碳源,通过不同加入量对材料进行碳包覆改性研究。研究结果表明:制备的材料均为橄榄石型结构,葡萄糖的含量对材料的颗粒形貌没有较大影响,但随着葡萄糖含量的增加,颗粒团聚尺寸减小,分布均匀;当葡萄糖加入量为40%(质量分数)时,制备的材料以0.05C、0.2C充放电,放电比容量分别为100.1mA·h/g,79.4mA·h/g;0.05C倍率30次循环后,容量保持率为73%,而0.2C倍率下,容量保持率仅为54%。 相似文献
2.
使用醋酸锂、醋酸锰和氧化铝为原料,采用高温固相法合成掺杂Al离子的LiMn2O4二级产物。合成化学计量比为n(Li)∶n(Mn)∶n(Al)=1.3∶1.9∶0.1。首次烧结温度450℃,烧结时间4h;二次烧结温度750℃,煅烧时间为40h。合成样品采用XRD进行材料表征。测试结果表明:合成样品为尖晶石结构,结晶度较高。所得样品使用炭黑包覆处理,并制成实验性电池,对其进行交流阻抗测试(EIS)分析、循环伏安特性(CV)测试、充放电及循环性能测试分析。实验结果表明:包覆后的正极材料改善了LiMn2O4的大电流充放电性能,该材料在0.5C的首次放电比容量为93mAh/g;包覆材料增强了在大电流充放电下的容量保持率,极大地改善了电池的循环性能,该材料在充放电倍率为0.2C时,32次循环后的容量保持率为92.5%。 相似文献
3.
4.
采用分段固相法合成了LiMn2O4和掺Cr的LiMn1.95Cr0.05O4电池正极材料.XRD分析证实2种材料都为尖晶石结构,但LiMn1.95Cr0.05O4有较小的晶格常数.循环伏安测试显示掺Cr增强了反应可逆性.交流阻抗测试表明,50次循环后,LiMn2O4电池的反应电阻增加了32.1%,LiMn1.95Cr0.05O4电池的反应电阻只增加21.7%,说明掺Cr可减小反应电阻的增加. 相似文献
5.
Cr3+对LiFePO4/C材料结构和电化学性能的影响 总被引:1,自引:1,他引:0
采用二步固相反应法合成了具有橄榄石结构的LiFe0.98Cr0.02PO4/C复合正极材料,并通过XRD、SEM、恒流充放电、循环伏安等分析测试手段对材料的物相结构及电化学性能进行表征。结果表明:LiFePO4材料引入Cr3+未改变其原有的晶体结构,但合成材料的颗粒尺寸明显减小,颗粒粒径约为200nm;获得的LiFe0.98Cr0.02-PO4/C复合材料具有良好的电化学性能,0.2C倍率下首次放电比容量为144.9mAh·g-1,50次循环后,容量保持率为99.6%,10C倍率放电比容量可达到116.3mAh·g-1。循环伏安性能测试表明Cr3+的掺杂提高了Li+在材料中脱嵌过程的可逆性。 相似文献
6.
通过高温固相合成法以MnCO3为锰源、(MgCO3)4·Mg(OH)·5H2O为镁源,葡萄糖为碳源,在氩气气氛下合成二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FT-IR)进行结构表征,通过恒电流充放电实验研究了LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C电化学性能。结果表明,二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C呈现橄榄石结构,无杂质产生。与未掺杂的LiFePO4/C相比,掺杂后LiFe0.8Mn0.1Mg0.1PO4/C提高了电导率,0.1C倍率下放电可逆容量为131mAh/g,表现出良好的电化学性能。 相似文献
7.
选择金属Ag为掺杂元素,通过溶胶-凝胶法制备了Ag掺杂的LiFePO4正极材料,并以此组装了CR2032扣式电池,研究了金属Ag掺杂摩尔比对LiFePO4的物相结构、微观形貌和对应电池电化学性能的影响。结果表明,Ag掺杂的LiFePO4具有橄榄石型结构,外观为棒状的小颗粒,颗粒尺寸的长度约为350~500 nm,宽度约为100 nm,颗粒之间有轻微的团聚。不同摩尔比Ag掺杂的LiFePO4正极材料的充放电效率均超过95%,适量Ag摩尔比的掺杂改善了LiFePO4的循环稳定性能、初始放电比容量和容量保持率。随着Ag掺杂摩尔比的增大,LiFePO4的最大放电比容量先增大后降低,Ag摩尔比3%的LiFePO4的放电比容量达到最大值为123.4 mAh/g,经过30次循环后放电比容量最大为70.4 mAh/g,容量保持率最大为57.05%,对应的电荷转移电阻为632.7Ω。可见,3%Ag-LiFePO4的综合性能最佳。 相似文献
8.
采用机械球磨结合微波辐射工艺合成C包覆锂离子电池正极材料LiFePO4/C.通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了不同C源和掺C量对样品物相结构、形貌和电化学性能的影响.实验结果表明,微波法可以快速合成LiFePO4/C正极材料;以乙炔黑作为C源,掺杂8%(质量分数)所合成的样品具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为148.44mAh/g,10次循环后仍有144.74mAh/g,容量保持率为97.51%. 相似文献
9.
10.
锂离子电池正极材料Li(MnxFe1-x)PO4的合成及电化学性能的研究 总被引:1,自引:1,他引:1
采用高温固相法合成了组成为Li(MnxFe1-x)PO4(x=0、0.2、0.4、0.6、0.8、1.0)的锂离子电池正极材料。通过对合成样品的XRD、SEM及电化学性能(循环性能,大电流放电性能)的研究表明,少量Mn的掺杂未影响到LiFePO4的晶体结构,但显著改善了它的电化学性能。Li(Mn0.2Fe0.8)PO4与LiFePO4材料相比有更好的电化学性能,在低放电倍率(电流密度为20mA/g)时,放电容量为150mAh/g,当放电倍率提高到2C时,放电容量仍可达113mAh/g,且循环性能良好。 相似文献
11.
以高密度FePO4作为前躯体,Cu(Ac)2为掺杂源,通过高温固相法合成了高振实密度的锂离子电池正极材料LiFe1-xCuxPO4/C(x=0、0.01、0.015、0.02、0.025).采用X粉末衍射(XRD)、电子扫描显微镜(SEM)、循环伏安法(C-V)和恒电流充放电对合成的材料掺杂进行了结构、形貌和电性能表征和分析研究.结果表明, 所合成的掺杂复合材料LiFe1-xCuxPO4/C为典型的橄榄石型结构,结晶度高,具有较高的振实密度.掺杂Cu2+离子在很大程度上可以提高LiFePO4的电化学性能,当Cu含量为2.0%(质量分数)时,LiFe0.98Cu0.02PO4/C的振实密度可以达到1.98g/cm3,比容量为最大值,0.1C倍率放电可达150.0mAh/g,体积比容量为297.0mAh/cm3;2C倍率放电比容量仍可以达到127.3mAh/g以上,体积比容量为252.1mAh/cm3. 相似文献
12.
对LiFePO4/C复合前驱体,分别采用静态氮气气氛,动态氮气气氛及静态真空三种烧结方式进行碳热还原合成LiFePO4/C复合正极材料.采用XRD、SEM、CV和充放电循环测试等方法分析和表征材料的结构、形貌和电化学性能.结果表明,烧结方式对所得材料的结晶度、晶粒大小、碳含量、合成温度以及电化学性能均有显著影响.真空烧结所得材料结晶度高,而动态气氛烧结对材料颗粒细化及均匀化都有积极影响,同时也能有效促进锂离子扩散动力学.动态气氛烧结可将材料的烧结温度降低到500℃,且所得材料表现出优异的电化学性能.0.5C倍率下循环首次放电比容量达到163.4 mAh/g,50次循环后容量保持率为99.02%. 相似文献
13.
镍钴锰三元材料作为锂二次电池正极材料是目前国内外研究热点.综述了三元材料近几年国内外的研究状况,重点介绍了LiNi1/Co1/3Mn1/3O2的晶体结构和作为锂离子电池正极材料的电化学反应特征及热稳定性,总结了制备技术对其性能的影响,以及不同掺杂元素(Mg、Al、Ti、Cr、F等)对其的改性作用,并展望了正极材料LiNi1/3Co1/3Mn1/3O2的发展. 相似文献
14.
15.
利用高温固相反应法在惰性气氛下合成了掺Mn的LiFePO4正极材料.考察了Mn2 的掺杂浓度对于目标化合物结构及其电化学性能的影响.应用XRD、循环伏安和恒流充放电等方法对产物进行了结构表征和性能测试.结果表明,产物具有单一的橄榄石型结构,Mn2 掺杂并未影响目标产物的结构,而是与LiFePO4形成了LiFe1-yMnyPO4(y为Mn的掺杂浓度)固溶体.目标产物具有优良的电化学性能.充放电测试表明,在0.1C倍率下放电,LiFe0.5Mn0.5PO4材料的首次放电比容量达129.1mAh/g,在4.1及3.5V处各存在一个放电平台.充放电循环20次循环后,容量仍保持在120.9mAh/g.利用循环伏安测试分析了Mn的改性效果及锂离子在目标化合物中脱嵌的过程. 相似文献
16.
本文以甘蔗渣作为生物质碳源制备Na2MnPO4F/C正极材料。通过球磨法及原位热解法制备Na2MnPO4F/C正极材料,利用拉曼光谱对正极材料制备条件进行表征分析,得出Na2MnPO4F/C最佳制备条件为碳源用量15%、煅烧温度600℃。利用XRD、SEM、EDS、电化学测量技术等手段对材料进行表征分析,结果表明,材料结晶性良好,碳材料很好地包覆在Na2MnPO4F聚氟阴离子材料表面,并且不影响材料结构。组装成纽扣电池,进行电化学性能测试。结果表明Na2MnPO4F/C材料电化学性能优于Na2MnPO4F材料,在0.1C下,Na2MnPO4F/C材料首圈放电比容量为8.71 m Ah/g,而Na2MnPO4F材料首圈放电比容量为1.94 m Ah/g,通过原位热解法进行碳包覆能有效的提高材料的电子电导性,增加容量。 相似文献
17.
王瑞林 《中国新技术新产品》2023,(16):30-32
橄榄石型磷酸铁锂(LiFePO4)由于具有良好的优点,受到社会各界的广泛关注。由于磷酸铁锂自身结构存在的一些缺点,因此导致电子传导率低和锂离子扩散系数小,不仅影响放电倍率,还阻碍工业化的应用。该文采用碳热还原法制备Li FePO4/C正极材料,研究不同三价铁源合成磷酸铁锂材料的电化学性能状况,通过XRD、SEM等手段表征所得材料,并通过恒流充放电等测试了解其电化学性能,从而找到一种最佳的低成本三价铁源,优化固相碳热还原工艺。 相似文献
18.
19.
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。 相似文献
20.
LiNi0.5Mn1.5O4正极材料由于其高电压、无钴和高能量密度优势而受到关注,但高电压下易受电解液腐蚀,循环稳定性差限制了其进一步应用。本文采用低温自蔓延法制备出高电压LiNi0.5Mn1.5O4材料,再使用不同糖类作为碳源进行包覆改性研究。结果表明,在400℃/Air条件下,以壳聚糖为碳源制备的LiNi0.5Mn1.5O4复合材料性能明显改善,在148 mA·h/g下循环400次后放电比容量仍有113.3 mA·h/g,容量保持率为91.07%。这主要归功于材料表面裂解的碳层提高了材料的导电性,缓解了电解液的侵蚀,降低了电极反应极化,提高了锂离子扩散速率。本文利用廉价的糖类作为碳源,合成工艺简单,为镍锰酸锂的应用提供了新的思路。 相似文献