首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可膨胀石墨阻燃水发泡聚氨酯泡沫塑料的制备   总被引:4,自引:0,他引:4  
采用四溴醇合成了适合水发泡的阻燃聚醚多元醇,并通过可膨胀石墨与其它阻燃剂的复配使用,制得了可膨胀石墨阻燃的水发泡聚氨酯泡沫塑料。讨论了溴代醇种类、发泡剂种类及用量、可膨胀石墨粒径及用量和复合阻燃剂配比等因素对泡沫阻燃性能的影响。结果表明,该阻燃聚醚多元醇与含有可膨胀石墨的复合阻燃剂复配使用,制得的可膨胀石墨阻燃水发泡聚氨酯泡沫塑料氧指数可达33%,压缩强度为280KPa,达到了国家标准GB/T8624-1997中B1级氧指数的要求,并且阻燃剂用量少,阻燃效果稳定。  相似文献   

2.
聚氨酯半硬质泡沫(SPUF)性能优异,应用广泛,但它属于易燃材料,且燃烧时极易产生烟毒,进而会对环境造成不利的影响。文中选用可膨胀石墨(EG)以及硅烷偶联剂KH791改性EG对全水发泡聚氨酯半硬泡进行阻燃,利用热重分析和残炭形貌对聚氨酯泡沫的热降解行为进行了研究,对比了EG改性前后对全水发泡聚氨酯半硬泡阻燃性能、热稳定性、力学性能和泡孔形貌的影响。结果表明,当EG的质量分数为20%时制得的可膨胀石墨阻燃聚氨酯泡沫氧指数可达29.4%,达到了UL94HB防火测试中HF-1级水平测试的要求;KH791改性EG后,阻燃效果略微降低,但是改性EG对于泡沫的泡孔形貌影响较小,能够提高全水发泡聚氨酯半硬泡的密度和压缩强度。  相似文献   

3.
方小林  宋俊  郑云波  任勇 《复合材料学报》2016,33(11):2426-2435
以膨胀蛭石为阻燃剂,采用中温发泡方法与酚醛树脂复合制备膨胀蛭石/酚醛阻燃保温复合材料。阻燃保温复合材料通过极限氧指数、锥形量热、导热系数和表观密度分析了发泡温度、固化剂含量、发泡剂含量、表面活性剂含量、固化时间以及蛭石含量对膨胀蛭石/酚醛阻燃保温复合材料阻燃及保温性能的影响。结果表明:以膨胀蛭石为阻燃剂制备的膨胀蛭石/酚醛阻燃保温复合材料的阻燃保温性能优越、表观密度低。单因素实验结果表明,膨胀蛭石/酚醛阻燃保温复合材料的最优条件为发泡温度80℃、固化剂含量10wt%、发泡剂含量10wt%、表面活性剂含量5wt%、固化时间2 h以及蛭石含量60wt%。最优条件下的膨胀蛭石/酚醛阻燃保温复合材料表观密度为190.08 kg/m3、压缩强度为0.32 MPa、导热系数为0.054 9 W/(m·K)、极限氧指数为71.1%、平均热释放速率为15 kW/m2。   相似文献   

4.
以聚磷酸铵(APP)为主阻燃剂,采用"一步法"工艺制备了环保高效的无卤阻燃全水发泡半硬质聚氨酯泡沫。通过旋转黏度计、扫描电子显微镜、氧指数测量仪、水平垂直燃烧仪、万能材料试验机研究了聚磷酸铵与氢氧化铝(AH)、甲基磷酸二甲酯(DP)的无卤阻燃复合体系对聚氨酯泡沫的发泡行为、结构与性能的影响及规律。研究表明,各无卤阻燃复合体系物料的黏度均随APP用量增加而增大,当APP用量大于30pphp时,黏度增幅变大,尤以添加AH的体系为最。各体系的氧指数均表现出随APP用量增加而增大的趋势,并在APP用量为60pphp时趋于相近值(26.7%),APP/DP体系只能达到垂直燃烧的V-2级别,而只添加APP和APP/AH体系均未达到垂直燃烧级别。只添加APP的体系和APP/AH体系在APP量较高时均因物料黏度大反应过热导致体系发泡不稳定出现内部缺陷,压缩性能下降。  相似文献   

5.
通过全水发泡“一步法”制备聚氨酯泡沫,探究添加不同含量角蛋白和锡酸锌对聚氨酯泡沫阻燃性能的影响。采用热重分析、锥形量热、极限氧指数(LOI)等方法对聚氨酯泡沫的阻燃性能进行表征。结果表明,当角蛋白和锌酸锡加入聚氨酯泡沫中时,其LOI由20.1%提高到20.9%,其中添加5g锡酸锌的聚氨酯泡沫的LOI最高为20.9%。此外,基于热重分析和锥形量热数据,发现添加3%角蛋白泡沫与5g锡酸锌的改性聚氨酯泡沫的阻燃效果最好。  相似文献   

6.
通过对精制后的碱木质素进行羟甲基化改性,利用改性后的碱木质素部分代替聚醚多元醇,利用一步发泡法制备碱木质素基聚氨酯泡沫材料,之后将膨胀石墨(EG)作为阻燃剂添加到碱木质素基聚氨酯泡沫材料制备出阻燃型生物质聚氨酯泡沫,通过极限氧指数(LOI)测试分析研究了阻燃型生物质聚氨酯泡沫材料的阻燃性能。通过借助热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分析研究了材料的热降解行为和成炭性能、燃烧行为和充分燃烧后残炭的表面形貌。分析结果表面,当羟甲基化后的碱木质素的添加量为聚醚多元醇的60%(质量分数)时,EG的添加量为30%(质量分数)时,制备出的阻燃型生物质聚氨酯泡沫的LOI值为30.1%,同时EG的加入降低了材料最大热降解速率,热释放速率和总热释放量,促进了材料的成炭,提高了材料的热稳定性,提高了材料的阻燃性能。  相似文献   

7.
以苯基膦酰二氯(BPOD)和乙二醇(EG)为原料合成含磷长链二元醇(P-polyol),用于制备含磷本质阻燃硬质聚氨酯泡沫塑料(RPUF),研究了P-polyol对聚氨酯泡沫塑料性能的影响。结果表明,使用P-polyol制备的聚氨酯泡沫,含磷量为1.82%时,极限氧指数达到24.7%;微型燃烧量热仪(MCC)测试显示,燃烧过程的热释放容量、总热释放量和热释放峰值均有所下降。热重分析(TGA)结果显示,在氮气中热分解后700℃的残炭量为22.6%,在空气中热氧化分解后700℃的残炭量为17.0%,较纯RPUF均提高了1倍以上。阻燃后聚氨酯泡沫的压缩强度比空白组提高了130%,并保持了原有的冲击强度,这一优点是众多添加型阻燃剂难以实现的。  相似文献   

8.
通过在聚氨酯泡沫发泡过程中加入木质素磺酸钠,同时利用次磷酸铝(AHP)和膨胀石墨(EG)作为协效阻燃剂,通过“一步法”制备出具有阻燃性能的木质素磺酸钠基聚氨酯泡沫材料(PUF).首先借助极限氧指数(LOI)测定仪对制备出的协效阻燃型PUF材料的阻燃性能进行表征。通过利用热重分析(TGA)、锥形量热测试(CONE)两种仪器对阻燃PUF材料的热稳定性和燃烧行为进行探究分析。利用场发射扫描电子显微镜(SEM),对材料燃烧后的残炭的微观照片进行分析。分析结果表明:当SLS的加入比例为原料总质量的4%(质量分数),AHP与EG的协效比为1∶4,两种协效阻燃剂的共同加入比例为30%(质量分数)时,生物质基阻燃PUF材料的LOI值增加到31.6%,协效阻燃剂的加入改善了PUF材料的热稳定性和成炭性能,从而使得材料的阻燃性大幅度增强。  相似文献   

9.
为了研究碱式硼酸镁改性聚氨酯泡沫的阻燃性能,该文先采用水发泡“一步法”制作多种含量碱式硼酸镁改性聚氨酯泡沫,再采用锥形量热(CONE)和极限氧指数(LOI)方法对制备所得的聚氨酯泡沫材料的阻燃性能进行表征。试验结果表明,当添加整体质量为1%的碱式硼酸镁时,其LOI由17.2提升至17.8;当添加整体质量为10%的碱式硼酸镁时,其LOI上升至24.1。此外,随着增加碱式硼酸镁的添量,可以有效降低聚氨酯泡沫的热释放速率峰值和总热释放量,添加10%碱式硼酸镁改性的聚氨酯泡沫的阻燃效果最好。目前的工作对今后聚氨酯泡沫阻燃改性的研究具有参考意义。  相似文献   

10.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、稻壳粉末等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同稻壳粉末添加比例的聚氨酯硬质泡沫材料的导热系数、阻燃指数和降解性能。结果表明:随着稻壳粉末添加量的增加,聚氨酯硬泡的绝热性能提高,极限氧指数则呈下降趋势,降解性能随着稻壳粉末添加量的增加而逐渐提高。  相似文献   

11.
使用三聚氰胺和四羟甲基硫酸磷合成三聚氰胺四羟甲基硫酸磷(MTHPS)阻燃剂,并用红外光谱(FTIR)、核磁共振谱(NMR)等手段对其结构进行了表征。采用包覆法将含有MTHPS阻燃剂的热固性酚醛树脂胶包覆在预发泡的可发性聚苯乙烯(EPS)珠粒的表面,再通过水蒸汽发泡、模压成型工艺制备出无卤阻燃的EPS泡沫材料。研究了MTHPS用量对EPS泡沫材料的阻燃性能和力学性能影响。结果表明,MTHPS用量为50 phr的阻燃EPS泡沫材料其氧指数为34.0%,达到UL 94 V-0级;随着MTHPS用量的增加,阻燃EPS泡沫材料的压缩强度和弯曲强度提高。  相似文献   

12.
为使得乙烯-醋酸乙烯酯共聚物(EVA)泡沫复合材料具有阻燃功能,分别添加膨胀石墨-聚磷酸铵(EGAPP)和膨胀石墨-聚磷酸铵-热塑性淀粉(EG-APP-TPS)两种不同复配阻燃剂,通过熔融共混和硫化发泡制备了无卤阻燃EVA泡沫复合材料。采用极限氧指数(LOI)、垂直燃烧(UL-94)、热分析质谱联用(TG-MASS)及扫描电镜(SEM)测试等对EG-APP/EVA及EG-APP-TPS/EVA泡沫复合材料进行表征。结果表明:EG-APP复配阻燃剂添加量为30wt%、EG与APP质量比为1∶4时,EG-APP/EVA泡沫复合材料的LOI达28.1%,UL-94为V-1级;而当EG-APP-TPS复配阻燃剂添加量同为30wt%,EG、APP与TPS质量比为1∶4∶1时,EG-APP-TPS/EVA泡沫复合材料的LOI可达29.3%,UL-94为V-0级。TG-MASS和SEM分析表明:EG、APP和TPS在气相和固相中均具有显著的协同阻燃作用。  相似文献   

13.
通过自由基共聚合和热空气自由发泡两步法,制备阻燃聚甲基丙烯酰亚胺(PMI)泡沫,其中功能单体为甲基丙烯酸(MAA)和丙烯腈(AN)、阻燃剂为2,4,6-三溴苯胺(TBA)、引发剂为偶氮二异丁腈(AIBN)、发泡剂为甲酰胺(FA)。通过泡沫垂直燃烧和极限氧指数(LOI)研究了PMI泡沫的阻燃性能,通过锥形量热仪研究了PMI泡沫的燃烧行为,通过热重分析研究了PMI泡沫的热降解性能,通过扫描电镜对PMI泡沫的形貌进行表征,同时对阻燃PMI泡沫的拉伸、弯曲和压缩强度进行测试。结果表明,当添加8 phr TBA时,PMI50/8TBA泡沫燃烧的火焰高度明显降低,LOI高达26.3%;同时,峰值热释放速率和总热释放量相对于PMI50分别下降了25.5%,41.6%。TBA的加入,使得阻燃PMI泡沫泡孔壁变薄,从而降低了材料力学强度。  相似文献   

14.
将马铃薯淀粉酸水解,非水条件下与三氯氧磷交联,制得氯化淀粉磷酸酯(SPC),后者分别与二乙醇胺、三聚氰酰胺反应合成2种环保型膨胀阻燃剂二羟乙基淀粉磷酰胺(SPE)与淀粉磷酸酯密胺(SPM)。测定二者含磷量,最高分别可达0.157%(wt,质量分数,下同)、0.169%。以XRD、IR表征了原料和样品结构。将2种阻燃剂分别与聚氨酯原料混合,采用全水发泡工艺制备系列阻燃聚氨酯(IFR-PU),以极限氧指数(LOI)及垂直燃烧实验对阻燃样品进行阻燃性能测试。结果表明,随着SPE、SPM添加量的增加,聚氨酯的LOI值逐渐增大,当SPE的添加量为30%时,LOI值为22.4%,未达阻燃级别。而SPM的添加量为30%时,LOI值可达29%,达到阻燃UL-94-V0级别,SPM的阻燃效果较SPE更好。  相似文献   

15.
新型膨胀型阻燃剂阻燃聚丙烯的应用研究   总被引:8,自引:0,他引:8  
以三氯硫磷、无水乙醇、对苯二胺为原料所合成的新型含磷、硫、氮的膨胀型阻燃剂(IFR),1,4-(O,O-二乙基硫代磷酰亚胺基)苯(DTPB)对聚丙烯(PP)进行阻燃,用热重法(TG)和差示扫描量热法(DSC)对阻燃PP的热性能进行了研究,利用氧指数仪测定了阻燃PP的极限氧指数(LOI)值,当阻燃剂含量为28%,LOI值为37.8%,并应用扫描电镜(SEM)对阻燃聚丙烯(FRPP)的残炭结构进行了研究,结果表明,该阻燃剂能够促进PP的成炭性,具有优良的阻燃PP性能。  相似文献   

16.
以9,10-二氢-9氧杂-10-膦杂菲-10-氧化物(DOPO)、甲醛和二乙醇胺为原料合成了新型反应型阻燃剂9,10-二氢-9-氧杂-10-[N,N-二(羟乙基)氨甲基]-10-膦杂菲-10-氧化物(DAM-DOPO),对其结构和在聚氨酯泡沫中的存在形式进行了表征,并对DAM-DOPO进行热失重分析。将DAM-DOPO与聚磷酸铵(APP)复配,制备了DAM-DOPO/APP阻燃聚氨酯泡沫塑料,并对其阻燃、力学性能及阻燃机理进行了研究。结果表明,合成的DAM-DOPO具有比DOPO较高的残炭率,最大热失重温度也向高温移动;DAM-DOPO应用到聚氨酯泡沫中起到了气相和凝聚相阻燃;复配阻燃剂总质量分数一定时(20%),随着APP所占比例的增大,PUF生成平滑致密的炭层,氧指数逐渐升高,烟密度等级逐渐降低,当m(DAM-DOPO)∶m(APP)=1∶4时,PUF的极限氧指数为24.0%,烟密度等级为34.98,水平燃烧距离Ld为8mm;冲击强度随着DAM-DOPO添加比例的减小而降低,当m(DAM-DOPO)∶m(APP)=1∶4时,PUF的冲击强度为0.065kJ/m2。  相似文献   

17.
分别以共混和共聚的方式,制备了三种不同的含磷阻燃共聚酯(FRPET)。并对三种FRPET的阻燃效果进行了比较。结果表明,共混型阻燃剂2-(2-羟苯基)苯膦酸盐(HAPP-Na)的加入对PET有一定的阻燃效果,磷含量为0.6%(质量分数)时,极限氧指数达到了26.4%;相同磷含量的共聚型阻燃剂DDP比共混型阻燃剂HAPP-Na的阻燃效果好,但是两者的熔滴现象都较严重;由于磷硅协同作用,使反应型磷硅阻燃剂DOPO-Si比只含有磷元素的DDP的阻燃效果好,而且具有抗熔滴的效果。  相似文献   

18.
硬段阻燃改性水性聚氨酯的合成与性能   总被引:5,自引:1,他引:4  
以二溴新戊二醇(DBNPG)为扩链剂,用硬段改性的方式将阻燃元素引入到水性聚氨酯中,合成出一系列不同改性程度的阻燃水性聚氨酯。用傅立叶红外光谱、核磁碳谱表征了合成产物;并用氧指数仪、TG热重分析仪、DSC差热分析仪对其进行研究。结果表明,15%(质量百分含量)DBNPG改性的水性聚氨酯氧指数已达29.6%;与未改性水性聚氨酯相比,其热稳定性提高;相分离程度随改性程度不同而规律性变化。  相似文献   

19.
研究了聚磷酸胺(APP)和季戊四醇(PER)阻燃聚氨酯泡沫的阻燃性能和热分解性能。采用氧指数法研究了APP和PER不同配比对聚氨酯泡沫阻燃效果的影响。结果表明:当APP用量为24份、PER为6份,即n(N)∶n(C)∶n(P)为1.2∶1∶1.1(摩尔比)时,阻燃聚氨酯泡沫MAP-3的极限氧指数最高。热失重结果表明,与聚氨酯泡沫APP-0相比,MAP-3的初始分解温度有所降低,但在高温下MAP-3的热稳定性较好。红外光谱结果表明,MAP-3的残炭主要由芳香族、含磷化合物和部分甲基结构组成。锥形量热仪分析结果表明,与APP-0相比,MAP-3的热释放速率和总热释放量均相对较低,阻燃泡沫表面可以形成致密、连续的膨胀炭层。  相似文献   

20.
以铂(Pt)为催化剂,采用脱氢法制备了环保阻燃硅胶泡沫(SiFs),通过锥形量热仪测试方法分析其火灾危险性,并利用极限氧指数、烟密度和热分析等手段研究了催化剂Pt及阻燃剂超细氢氧化铝(ATH)、超细碳酸钙(CC)、超细氢氧化镁(MDH)和氢氧化铝/碳酸钙(ATH/CC)对SiFs阻燃抑烟和热分解特性的影响。研究结果表明,SiFs的火灾安全性优于聚氨酯(PU)和聚甲基丙烯酸甲酯(PMMA)材料。Pt含量对SiFs的阻燃及热分解特性影响显著,当Pt的质量分数为0.6%和0.9%时,SiFs的阻燃抑烟性能较好。Pt质量分数为0.9%时,SiF的初始分解温度最高,热稳定性好。阻燃剂添加量越多,阻燃效果越好,添加ATH的SiFs阻燃性能最好。ATH和MDH具有优异的抑烟性能,但添加ATH和MDH的SiFs力学性能随添加量增加而下降。此外,Pt及阻燃填料能够影响SiFs的初始热解温度,减缓热分解进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号