首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表面应力耦合异质结构是一种改善非均相催化剂催化性能的有效策略.它可以在调控催化剂电子结构的同时,促进电荷传输.一般来说, Bi基催化剂对CO2电还原为甲酸的选择性高于ZnO,但是金属Bi的价格高于Zn.本文以十六烷基三甲基溴化铵为模板剂,通过一步水热法合成了一种具有多孔纳米片形貌的Bi2O2CO3/ZnO异质结催化剂,用于高效电催化CO2还原制备甲酸.在-1.0 V vs. RHE下,该催化剂展现出最大甲酸盐法拉第效率(92%),且在施加-1.2 V vs. RHE电压下甲酸盐偏电流密度为200 m A mgBi-1.更重要的是,对Bi的质量进行归一化发现, Bi2O2CO3/ZnO的质量活度比纯Bi2O2CO3的质量活度提升了3.1倍.通过X-射线光电子能谱和X-射线吸收谱测试表明,在该催化剂中,界面Zn原子电荷向Bi原子转...  相似文献   

2.
电催化二氧化碳还原反应(CO2RR)被认为是一种潜在的碳循环技术,因为它可以利用CO2作为资源在温和条件下生产高附加值燃料和化学品.因此,开发高效的二氧化碳还原反应催化剂极其重要.本文设计了一系列TM-N2O2Cx (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn)单原子催化剂,并利用密度函数理论研究了其对CO2RR的催化活性.这些TM-N2O2Cx催化剂在相对较低的过电位下对三种不同的产物,包括CH4、CO和HCOOH,表现出优异的CO2RR产品选择性,其中ScN2O2Cx、Mn-N2O2Cx、Zn-N2O2Cx的CO2RR产品是CO,V-N2  相似文献   

3.
近年来,力致发光(ML)材料引起了科研人员的广泛关注,因其在众多领域特别是温度传感领域具有潜在的应用价值.值得注意的是,基于ML的温度传感尚处于萌芽期,且目前没有理论支持.本文中,我们基于CaZnOS:Er3+力致发光材料和玻尔兹曼分布建立了ML温度传感技术的理论框架.在外部应力刺激下, CaZnOS:Er3+力致发光材料能够发射出明亮的绿色荧光,且遵从玻尔兹曼分布理论.基于此,我们证实了该ML温度传感理论框架的适用性,并将其应用到实际案例中,即监测水壶的温度.与此同时,我们也开发了CaZnOS:Er3+力致发光材料的多重功能,验证了其在动态防伪和信息加密提取方面的应用.简言之,本工作从实验和理论两方面进行研究,奠定了ML温度传感技术实用化的基础.  相似文献   

4.
由于金属与二维半导体接触界面复杂的电荷转移,界面处经常会产生强烈的费米钉扎效应.本文以Bi2OS2(拥有目前二维半导体材料中已知的最高电子迁移率)作为二维沟道层,采用密度泛函理论系统地计算了其与金属电极接触界面的肖特基势垒以及界面电荷转移机制.当Bi2OS2与三维金属电极接触时,界面强的电荷转移主要由化学键的形成以及泡利电荷排斥作用引起,导致界面具有强的费米钉扎,并且由这两个原因引起的电荷转移方向相反.此外,当金属的功函数大于半导体的电离能或小于半导体的电子亲合能时,界面会产生一个额外的电荷转移.当Bi2OS2与二维金属电极接触时,界面的费米钉扎完全被抑制,界面遵循肖特基-莫特定律,这是因为本文所选用的二维金属电极能够有效地屏蔽泡利电荷排斥作用.因此,通过选择不同功函数的二维金属电极,能够宽范围、线性地调节界面的肖特基势垒高度,并且能够实现界面从n型欧姆接触到p型欧姆接触的转变.这项研究不仅为Bi2OS2基器件的...  相似文献   

5.
最近,全无机铯铅溴(CsPbX3 (X=Cl,Br,I))钙钛矿纳米晶体被广泛应用于光催化CO2还原(CO2RR)领域.但是,由于纯CsPbX3纳米晶体内部载流子辐射复合严重,所以精心设计基于CsPbX3纳米晶体的异质结构对于分离载流子和实现高效的CO2RR是非常重要的.本文中,我们介绍了利用光辅助的方法将Pd纳米颗粒锚定在CsPbX3纳米晶体上.利用此方法所制备的CsPbBr3@Pd纳米晶体通过在CsPbBr3/Pd界面处构建肖特基结从而促进了载流子的分离并抑制了辐射复合.第一性原理计算表明:在CO2RR过程中,CsPbBr3@Pd纳米晶体比纯CsPbX3纳米晶体具有更低的能量势垒.当CsPbBr3@Pd纳米晶体被用作CO2RR催化剂时,电子消耗速率高达46.2μmo  相似文献   

6.
由于单金属Bi在CO2还原反应(CO2RR)中效率较低,通过表面工程复合材料提高电导率和产率是一种有吸引力的方法.在此,我们重构了在三维纳米孔铜结构中的原位生长金属Bi纳米颗粒.得益于三维纳米多孔导电网络和Cu与Bi之间的强相互作用, Bi@np-Cu费米能级向上移动,表现出优异的电催化二氧化碳还原性能. Bi@np-Cu在-0.97 V的电位下具有97.7%的甲酸法拉第效率,电流密度为82 mA cm-2.重要的是,该催化剂在连续催化反应40 h后仍能实现超过90%的法拉第效率.DFT计算表明, np-Cu有效地调节了Bi的电子态,优化了中间吸附能,从而提高了Bi的本征活性.这项工作为纳米多孔金属在催化中的应用提供了一个新视角.  相似文献   

7.
本文设计合成了一种Te4+离子掺杂的Cs2InCl5·H2O单晶,该单晶在紫外光激发下发射明亮橙光.未掺杂的Cs2InCl5·H2O单晶几乎没有发光现象,但Te4+掺杂的Cs2InCl5·H2O单晶,发射峰位于660 nm,并伴随着大的Stokes位移和宽的发光半峰宽(180 nm).结合变温荧光光谱以及飞秒瞬态吸收光谱等表征,揭示了其发光机理为自陷激子发光.零维结构中的强电声耦合以及软晶格有利于形成并稳定自陷激子.特别地,由于Te4+离子的最外层电子结构为5s2,对温度变化较为灵敏, Te4+离子掺杂的Cs2InCl5·H2O单晶的发光寿命表现出了非常强的温度依赖性,发光寿命从80 K下的6μs缩短至380 K下的1...  相似文献   

8.
通过Cu3SbSe4-MTe (M=Ge/Sn)固溶体系的对比研究,本文报道了一种增加键共价性来弱化电声耦合进而获得高迁移率的策略,也证实了该策略能提升Cu3SbSe4化合物的热电性能.研究发现,相比于SnTe固溶,GeTe固溶赋予Cu3SbSe4化合物在相似载流子浓度情况下更高的迁移率,进而获得更优越的电输运性能.密度泛函理论计算表明,与SnTe固溶相比,GeTe固溶能增加Cu3SbSe4化学键共价性因而具有优越的电输运性能.最终,在Cu3SbSe4-1%GeTe样品中取得了0.8的最大热电优值(@648 K)和0.41的平均热电优值(300–648 K).此研究表明,通过增加键共价性来弱化电声耦合进而获得高迁移率是提升热电性能的有效途径.  相似文献   

9.
高能量密度锂金属电池在电化学储能领域受到了广泛关注,但其存在热失控的风险.尤其在高温或热滥用等恶劣条件下,安全隐患更加凸显.研发本征热稳定、高安全电解质是该领域的一个主要挑战.在该工作中,我们提出了一种简单易操作的凝胶化策略,制备出独特的、高热稳定的环丁砜基凝胶电解质.采用耐高温环丁砜作为增塑剂,通过强偶极-偶极相互作用,实现了聚偏氟乙烯/聚环氧乙烷基质之间的凝胶化,并系统地研究了砜基凝胶对凝胶化过程、锂沉积/剥离和固态电解质界面的影响.由于良好的界面特性,砜基凝胶电解质显著提高了锂金属电池的长循环和安全性能.由凝胶电解质组装的Li/LiCoO2电池,在高温(高达90℃)条件下仍然呈现出优异的循环稳定性.此外,通过加速量热仪证实了Li/LiCoO2软包电池的高热安全性(>190℃).该研究工作为开发耐滥用、高比能和长寿命的高安全性锂金属电池提供了新方法.  相似文献   

10.
LaTaON2是一种极具吸引力的可见光活性光催化水分解材料.它的吸收波长能够达到650 nm,并且符合水分解反应的热力学要求,是光催化水分解的候选材料.尽管LaTaON2具有这些优异的性质,它的光催化活性通常不够理想.这是由于LaTaON2材料通常具有较高的缺陷浓度,严重阻碍了电荷分离.在本文中,我们通过将Al掺杂到Ta亚晶格中来对LaTaON2材料进行改性,得到LaTa1-xAlxO1+yN2-y(0≤x≤0.20). Al掺杂不仅抑制了LaTaON2材料中的缺陷浓度,增加了其表面亲水性,而且还保持了材料原有的可见光吸收性质.这些改进显著改善了LaTaON2材料内的电荷分离情况,并极大增强了材料可见光下的光催化氧化水制氧性能.在最佳条件下, Al掺杂的LaTaON2在420±20 nm处水氧化的表观量子效率达到1.17%,这个性能要优于大多数已报...  相似文献   

11.
基于半导体的高效太阳能转换光催化是应对日益严重的全球能源和环境危机的理想策略.然而,光催化的发展仍然受到可见光利用率低、电荷转移和分离效率低、反应位点不足等问题的限制.本文采用一步还原法将Au纳米颗粒沉积在Bi2WO6表面,同时诱导Bi2WO6表面形成氧空位.我们发现氧空位浓度随着Au负载的增加而增加. Au纳米颗粒和氧空位改善了材料的光吸收,并促进了光生载流子的分离和运输.此外,氧空位与附近的金属活性位点协同作用,优化了反应物在催化剂表面的吸附能,改变了CO2分子在催化剂表面的吸附形式,最终在无需牺牲剂的气固体系中实现了高达34.8μmol g-1h-1的CO光催化产出速率,比未改性的Bi2WO6高出9.4倍.这项工作有望进一步加深我们对金属纳米颗粒与氧空位之间的关系及其在光催化中的协同作用的理解.  相似文献   

12.
本研究利用光致发光(PL)、光致发光激发(PLE)、时间分辨PL和拉曼光谱技术等,详细研究了通过熔盐固相法合成的Sr2LuNbO6:Mn4+深红荧光粉的光学性质.在室温下,样品的PL光谱呈现出阶梯状谱形.然而,在低温下,测量的PL光谱由两组多模振动电子发光谱线组成.基于变温PL光谱和拉曼光谱,我们识别出双零声子谱线以及两组恒定能量间隔为~2.8 meV的多模声子伴线.这项研究首次发现Mn4+离子的2Eg激发态能级在氧化物八面体晶格中具有~2.8 meV能量差的劈裂,并证实多种振动模式深度参与Mn4+离子的振动电子发光.  相似文献   

13.
热处理是金属材料热机械加工的常用手段.随着热处理温度的升高而湮灭的缺陷通常导致材料的塑性提升而强度降低.本研究中,我们通过提高热处理温度促进相溶解而协同提升了TiZrNbTa高熵合金的强度和塑性.当热处理温度从800提升至1250°C,合金的拉伸屈服强度提高了40%,达到1003±16 MPa.同时,合金的伸长率增加了近一倍,达到16.79%±1.03%.热处理温度提升引起的相溶解加剧了晶格畸变,从而增强了晶格摩擦应力并提升了屈服强度.相溶解也降低了界面失配并缓解了应力集中.此外, 1250°C热处理合金中的局部化学有序结构促进了位错共平面滑移和位错增殖.两种机制共同提升了合金的塑性.该研究不仅扩展了关于金属材料中热处理和相溶解的理解,而且也为合金的强韧化设计提供了思路.  相似文献   

14.
微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm-2,功率密度为194μW cm-2,能量密度为1 997 mWh cm-2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。  相似文献   

15.
O2通过电化学法直接合成H2O2是目前最有可能替代工业上高耗能的蒽醌氧化/还原法的合成方法,但其一直受限于难以开发出高效且低成本的电催化剂.在此,我们通过聚合物脱卤的绿色策略合成了氧化硼掺杂碳(O-BC)材料,将其用作2e-氧还原反应(ORR)的电极材料,采用电化学的方法制备H2O2.通过实验调控硼源(H3BO3)的用量和退火温度,优化了O-BC材料的催化活性.电化学测试表明:最佳的O-BC-2-650样品表现出高达98%的H2O2选择性;在H型碱性电解槽中H2O2平均产率为412.8 mmol gcat.-1h-1.密度泛函理论计算模拟表明:与一个氧原子相连的硼原子是最佳的活性位点,在吸附O2的氢化过程中获得最低的吉布斯自由能差(ΔG)0.03 e V;而没有与氧原子相连或者与两个...  相似文献   

16.
具有原子层厚度的过渡金属硫族化合物(TMDs)的光电性质深受缺陷数量(DPs)的影响.在本工作中,我们通过多种制备方法得到了具有不同缺陷数量的单层WS2,并进一步揭示了他们之间不同的激子-激子相互作用.稳态荧光(PL)实验观察到在低的激发功率下,具有最少缺陷密度的单层展示出了最高的荧光强度,但在高的激发功率下却被具有更多缺陷的单层所追赶并大幅超越.激发功率依赖实验表明这些单层展现出了不相同的荧光饱和行为,其饱和阈值功率差异甚至高达四个数量级.结合原位荧光成像以及时间分辨荧光实验,我们将这些单层中的荧光演化差异归因于不同的缺陷数量.而这些缺陷数量的差异大大地影响着激子扩散行为并随之带来不同的非辐射激子-激子湮灭.通过谷偏振实验,我们再次检验了这些单层的缺陷数量.本工作揭示了不同缺陷过渡金属硫族化合物单层中截然不同的荧光行为和潜在的激子动力学,很大程度上促进了面向实际应用的相关高性能器件的设计.  相似文献   

17.
铜基氧化物表面的氧化物种可以增强CO2吸附,降低含氧中间体的结合能,从而提高电还原CO2的一步还原产物的产率.鉴于此,在还原过程中,Cu2O上的残留氧通过Sn2+稳定,并且残留氧的保留通过原位拉曼光谱(Cu–Oads)得到了证实.同时,原位拉曼光谱和密度泛函理论计算结果证明,由于残留氧的存在,一氧化碳中间体在SnO/Cu2O催化剂的吸附能比Cu2O催化剂明显降低.这使得其在-0.8 V (相对于可逆氢电极)的电位下获得高达97.5%的法拉第效率.铜基氧化物催化剂的氧稳定策略对设计高性能电还原CO2催化剂具有指导意义.  相似文献   

18.
反应物界面对电催化反应至关重要.然而,由于调控和表征手段的不足,对反应物界面的深入研究仍难以实现.本文中,我们借助单片电催化微纳器件,通过调节背栅电压引入分子极化,实现了对电化学双电层中水合氢离子(H3O+)浓度的调控,进而提高了催化剂的电催化析氢性能.以C60/MoS2异质结为例,电学性能测试表明背栅电场促进了电子从C60向MoS2的转移,并导致了C60分子的极化.原位光致发光光谱表征显示,在背栅电场的作用下,极化的C60分子会吸引H3O+,使其聚集在MoS2附近.而电催化测试表明,在1.5 V背栅电压下,由于发生了H3O+的富集,C60/MoS2异质结在-0.45 VRHE电位下的析氢电流密度增加了5倍我们提出的调控和监测反应物界面的方...  相似文献   

19.
无污染、低成本和高性能Cu1.8S基类液态热电材料受到关注.但是,其过高的本征Cu空位和Cu离子迁移特性限制了其性能和电稳定性的进一步提升.本研究采用机械合金化结合放电等离子体烧结制备了一系列Cu1.8S和MnxCu1.8S0.5Se0.5(0.01≤x≤0.06)块体热电材料.随着Se和Mn的引入,体系由低熵Cu1.8S (0.4R*)转变为中熵MnxCu1.8S0.5Se0.5(1.2R*).构型熵的增加不仅提高了体系的结构对称性,MnxCu1.8S0.5Se0.5室温下呈立方相结构,还增大了Mn的固溶度.高浓度Mn固溶有效填补了过高的本征Cu空位,降低了载流子浓度,优化了能带结构,提升了电输运性能.熵工程一方面增大了Cu离子迁移势垒,抑制Cu离子迁移.75...  相似文献   

20.
二维织物材料已广泛应用于太阳能界面蒸发,然而织物基太阳能蒸发器要实现吸光材料与纤维之间的强相互作用,高效的输水能力,优异的脱盐性能和高蒸发率仍然具有挑战性.我们制备了一种织物交错复合水凝胶(FICH)用于高效的太阳能界面蒸发.由于酸化碳纳米管均匀分布在水凝胶中并与大分子链形成氢键,水可以通过超亲水织物连续泵入复合水凝胶中,从而降低水的蒸发焓.薄型FICH蒸发器具有优异的光热转换性能,具有高蒸发速率(2.47 kg m2 h-1),强耐盐性,长期蒸发稳定性和耐久性.此外,FICH可以用于腐蚀性溶液和乳液的净化,在太阳能海水淡化中显示出广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号