首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,这类估计方法存在计算复杂度过高而难以在工程中实际应用的问题。针对传统GRU神经网络估计SOC时需要进行大量隐状态迭代而导致计算复杂度过高的问题,提出了网络隐状态时序继承的递推更新方式,通过改进GRU网络的输出结构,从而实现了仅需对当前时刻采样数据进行一次网络计算即可准确获取当前时刻SOC估计值。与文献中报道传统GRU方法相比,该递推GRU方法在保证SOC估计准确度不降低的情况下,能减少99%以上的计算量,具有较好的应用前景。此外,针对部分应用场景中电池训练数据缺乏的问题,方法能够结合迁移学习来快速完成网络训练。通过实验室测试数据集以及公开数据集进行验证,该方法能对不同温度环境、不同老化状态以及不同型号的锂离子电池进行准确SOC估计,其最大估计误差均不高于3%。  相似文献   

2.
随着锂离子电池(Lithium-ion batteries,LIB)在电动汽车、储能电站和备用电源等领域的广泛应用,准确、及时地估计电池健康状态(State of health, SOH)是确保电池系统运行可靠性和安全性的关键因素。锂离子电池内部复杂的电化学反应和多变的外部使用条件,使得实现精准的健康状态估计具有挑战。随着人工智能、大数据分析等技术的快速发展,电池SOH评估的方法也逐渐多样化。首先介绍电池的老化机理和SOH概念,随后介绍了实验法、基于模型、数据驱动和融合方法,详细分析了每种方法的特点,并比较了在实际应用中相应的优势和局限性。最后,对SOH估算的未来趋势进行了展望。  相似文献   

3.
本文以容量和能量为电池健康表征参数进行电池健康状态(State of health, SOH)评估方法研究。首先分别采用两种方法进行健康状态估计:一种是直接输入原始电池容量、能量序列,利用灰色预测算法(Metabolic grey algorithm, MGA)对电池容量和能量进行预测;另一种是先输入原始模型参数,利用灰色预测算法对简化电化学-老化模型(Simplifiedelectrochemical model, SEM)参数进行预测,将预测后的参数值代入到模型当中,拟合电池端电压曲线,再通过积分法获取电池的容量和能量。针对两种健康表征参数衰退速度、估计精度等问题,提出基于数据-模型混合驱动的锂离子电池健康状态的综合评估方法,实现电池健康状态的准确估计。  相似文献   

4.
锂离子电池技术的日益成熟为新能源发电和电动汽车等产业发展提供了重要支撑作用。锂离子电池采用有机电解液,发生故障后极易触发电池材料的放热副反应,导致电池热失控,最终可能演化成燃烧爆炸等重大事故。电池健康状态(State of health,SOH)是锂离子电池储能系统故障诊断和安全预警的重要参数,精确估计SOH是提升电池系统安全性的有效方法。提出一种基于温度变化率(DT)曲线的锂离子电池健康状态评估算法,充分提取反映电池健康状态的锂离子电池表面温度信息,以电池充电过程中的DT曲线的极大值点和两极值间的电压差作为电池SOH估计的特征量,进而搭建了基于反向传播(Back propagation,BP)神经网络的SOH估计模型。结合试验数据和仿真,测试结果最终表明,所提出的方法可有效提升锂离子电池SOH的估计精度。  相似文献   

5.
高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。  相似文献   

6.
目前数据驱动的锂离子电池健康状态(State of health,SOH)估计方法已成为研究热点,但实车应用中产生的小样本数据问题会导致数据驱动模型精度低、泛化能力差等问题,由此提出一种基于特征模态分解及迁移学习的SOH估计方法。首先,从电池小样本数据片段中提取健康特征,通过改进的自适应噪声完备集合经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,iCEEMDAN)分离出本征模态分量(Intrinsic mode function,IMF)与残余分量(Res)两类包含不同特征信息的分量;然后将分解优化后的特征信息分别通过LSTM网络和BP网络进行针对性训练,构建特征信息与电池SOH的关联模型;最后将模型迁移至其他数据集估计电池的SOH。基于NASA公开电池数据集的试验结果表明,所提方法具有高准确度及泛化能力,估计的平均绝对误差(MAE)和方均根误差(RMSE)分别为2.34%和3.05%,迁移后的MAE和RMSE分别为1.13%和1.68%。  相似文献   

7.
动力电池的准确建模及荷电状态(State of charge,SOC)的精准估计对提高电池的利用效率、延长使用寿命具有重要意义.各类SOC估计方法中,基于电池等效电路模型估计法的精准性和鲁棒性好,且电池模型结构简单、计算量小,在电池管理系统(Batter management system,BMS)中具有较好应用前景....  相似文献   

8.
锂离子电池的健康状态(state of health,SOH)是电池管理系统的核心问题,对其精确的评估能够保障电池的安全可靠运行.然而在实际应用中,容量较难直接测得,导致SOH估算困难.为了获得准确的SOH,本文提出一种基于注意力改进双向门控循环单元(BiGRU)的锂离子电池SOH估计方法.首先提取电池充放电曲线中的电压、电流与阻抗等参数,通过自编码器(auto encoder,AE)对其降维,提取特征量并减少数据间的冗余性.其次,引入注意力机制(attention mechanism,AM)对输入变量分配权重,突出对SOH估计起到关键作用的特征量.最后,利用BiGRU学习输入变量与容量之间的映射关系,捕获容量衰减下的长期依赖性.在不同充电倍率的电池数据集上的结果表明,该方法对不同类型电池的SOH皆可以实现高精度估计,均方根误差在1.1%以下.  相似文献   

9.
锂离子电池(Lithium-ion batteries, LIBs)广泛应用于储能系统(Energy storage system, ESS)、电动汽车(Electric vehicles,EVs)等领域。然而,电池在运行过程中容量会逐渐下降直至退役。传统方法以80%健康状态(State of health, SOH)作为退役标准,未考虑电池实际衰退速率,不仅不能充分利用健康电池,而且难以有效保障非健康电池的安全性。同时,SOH相等但电池老化特性和衰退速度不一定相同。仅以SOH评价无法准确反映电池老化差异。为此,提出一种锂离子电池全寿命周期个性化退役标准和老化评价方法。以容量衰退梯度和SOH为特征,首次定义全新退役指标(Index of decommissioning,IoD),计算IoD在80%SOH下的分布,获取退役阈值,并以此阈值为标准定义电池退役时刻。提出一种全新的健康状态评价指标—电池容量跳水度(Terminal diving rate,TDR),评价电池在使用过程中出现的非线性老化现象。通过在MIT公开数据集上验证,所提方法计算简单、鲁棒性强,能够实现电池个性化退役,更有效...  相似文献   

10.
准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。  相似文献   

11.
车用锂离子电池的健康状态(state of health,SOH)和剩余寿命(remaining useful life,RUL)是锂离子电池的关键状态参数,为实现其准确的预估以保障整车安全可靠的运行,基于电动汽车充电过程提出一种改进高斯过程回归(Gaussian process regression,GPR)的锂电池SOH估计和RUL预测模型。首先以最大互信息系数(maximal information coefficient,MIC)、Pearson系数筛选充电过程的多元信息作为健康因子,基于主成分分析(principal components analysis,PCA)简化模型结构并使用粒子群算法和组合核函数改进高斯过程回归,实现车用锂离子电池SOH的准确在线估计以及RUL预测。通过NASA锂离子电池数据集验证了模型的有效性:测试电池SOH估计的最大均方根误差(root mean square error,RMSE)为0.0148,SOH预测的最大RMSE为0.0169,RUL预测的最大绝对误差为1个循环次数。  相似文献   

12.
锂电池的荷电状态(SOC)估算是电动汽车的系统管理与能量控制的重要参数。在SOC估算过程中,电池参数变化和老化问题会对结果造成很大影响。针对这一问题,在递推最小二乘法算法(RLS)辨识锂电池模型的参数的基础上更新电池容量,通过容积卡尔曼滤波(CKF)估算电池SOC,结合RLS和CKF实现在电池参数发生变化时准确估计SOC。以锂离子电池作为对象,应用所提出的算法实现锂电池的SOC在线估计,验证算法的准确性。  相似文献   

13.
锂离子电池的健康状态(state of health,SOH)是电池管理系统的重要功能,对于电池的可靠运行和使用寿命具有重要意义。为了进一步提高数据驱动方法对锂离子电池SOH估计的精度,提出一种卷积Fastformer模型的SOH估计方法。首先,提取锂离子电池多个充电阶段的每次循环电压曲线、电流曲线,每个阶段各个曲线转换为统计健康特征来表征锂离子电池老化特性,并使用Pearson相关系数对所选统计特征进行了相关性分析,筛选出与容量相关性高的健康特征,消除特征冗余性。随后,融合卷积神经网络和具有线性复杂度的Fastformer神经网络的特点,使用卷积神经网络强大的特征提取能力挖掘健康特征的局部信息,利用Fastformer的多头附加注意力机制可以更高效地在复杂的长序列中总结全文信息。然后,为减少模型训练时间,利用正交实验法对模型超参数进行优化。最后,采用公开数据集将所提方法与CNN、GRU、RNN模型进行对比,验证卷积Fastformer模型的准确性,结果表明,平均绝对误差、均方根误差最大仅为0.25%,0.29%,相对误差在0.8%以内,具有较高的估计精度和稳定性。  相似文献   

14.
锂电池储能装置在电网中承担削峰填谷、调频保电的重要工作,因此有必要预测其运行状态,为下一步制定运维与检修计划提供依据.为实现锂电池储能装置荷电状态(state of charge,SOC)与健康状态(state of health,SOH)的联合预测,首先分析了预测电压与温度的必要性和SOC与SOH的关联性,然后提出采...  相似文献   

15.
储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。本工作首先通过静流间歇滴定技术探究铅炭电池的荷电状态与开路电压关系,后通过混合脉冲功率性能试验得到铅炭电池的伏安特征数据,建立一阶Thevenin和一阶PNGV等效电路模型,利用基于代理模型和灵敏度分析的随机算法(surrogate optimization algorithm,SOA)对两种等效电路模型进行参数辨识。在此基础上,利用扩展卡尔曼滤波算法(extended Kalman filter,EKF)估计铅炭电池SOC,估算过程考虑噪声干扰。另外,在铅炭电池SOC初值未知的情况下,EKF算法不能准确估计铅炭电池SOC。因此,本工作提出采用自适应扩展卡尔曼滤波算法(adaptive extended Kalman filter,AEKF)对铅炭电池进行状态估计,来弥补EKF的不足。结果表明,在存在噪声且SOC初值未知的情况下,AEKF算法较EK...  相似文献   

16.
锂离子荷电状态(State of charge,SOC)的精准估计是锂离子电池安全稳定运行的基础。传统的误差反向传播(Back propagation,BP)神经网络估计SOC的精度不高,而循环神经网络(Recurrent neural network,RNN)也容易陷入局部最优。针对这些问题,提出了自适应灾变遗传-循环神经网络(ACGA-RNN)联合算法,将自适应灾变遗传算法(Adaptive cataclysm genetic algorithm,ACGA)用于优化RNN的初始权值和阈值,提高了最优权值和阈值的全局搜索能力,从而有效提升锂离子电池SOC的估计精度。基于锂离子电池充放电的试验数据,将所提ACGA-RNN联合算法与RNN、GA-RNN算法分别用于锂离子电池的SOC估计。测试结果显示,相较于传统的RNN算法与GA-RNN算法,提出的ACGA-RNN联合算法获得了最佳的SOC估计精度,在DST工况下的估计平均绝对误差为1.74%,低于传统RNN和GA-RNN的估计精度3.68%和2.49%;另外,在45℃和0℃条件下,ACGA-RNN联合算法估计的平均绝对值误差分别为1.7...  相似文献   

17.
钠离子电池健康状态(SOH)预测对于电池优化管理有重要意义,但由于钠离子电池老化机理复杂,影响因素众多,精准SOH预测挑战巨大.为此,本研究从健康状态时序测量数据出发,提出了基于双指数模型的粒子滤波法(DEM-PF)和基于小波分析的高斯过程回归法(WA-GPR),以实现钠离子电池单步SOH和剩余可用寿命(RUL)预测.前者直接采用双指数函数构建时序SOH数据模型,并结合PF算法进行模型参数更新;后者采用小波分析实现时序SOH数据多尺度解耦,采用GPR构建各尺度数据模型并进行融合后实施预测.实验结果表明,相比DEM-PF方法,WA-GPR方法的单步SOH和RUL预测效果更好,单步SOH预测均方根误差为0.8%,RUL预测误差最小为3次循环,从而为钠离子电池管理提供有效支撑.  相似文献   

18.
精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要.模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素.为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识.在此基础上,采用自适应容积卡尔曼滤波(ACKF)算法估计电池SOC,对系统噪声进行实时更新以提高估计精度.此外,对于计算过程中由于协方差矩阵失去正定性而出现平方根无法分解的问题,利用奇异值分解的方法代替Cholesky分解,以提高数值计算的稳定性.最后将BCRLS与ACKF相结合以实现模型参数和SOC的联合估计,并在不同工况和初始值不精确的情况下进行算法验证,结果表明本文所提算法具有较高的精度,平均绝对误差在2%以内.  相似文献   

19.
健康状态(state of health,SOH)是评估锂离子电池老化程度和剩余使用寿命的重要指标。然而,SOH无法通过直接测量获得,本工作提出了一种基于时间规整图(time warp profile,TWP)提取间接健康特征参数,使用支持向量机回归(vector machine regression,SVR)模型估计SOH的方法。首先,通过TWP将锂离子电池不同循环充放电压曲线转换为相位差异曲线。然后,从相位差异曲线中提取出4个间接健康特征。接着,采用线性核函数的SVR模型估计SOH。最后,以美国航空航天局(National Aeronautics and Space Administration,NASA)、美国保险商实验室公司和普渡大学(Underwriters Laboratories Inc.-Purdue University,UL-PUR)的开源数据集和储能电站实测数据进行验证。其中,储能电站数据实验结果表明,TWP-SVR模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)的样本标准差...  相似文献   

20.
针对退役动力电池储能系统中不同电池簇间的同期退役问题,提出了一种基于多分支拓扑的同期退役协同控制策略.该策略针对不同时段的功率需求,根据储能系统中电池健康状态(SOH)的失衡度,首先选择电池健康状态较好的电池簇优先出力或者使所有电池簇共同出力的模式,并根据电池簇荷电状态(SOC)分布情况,采用基于实时可变电流作为正反馈调节值的控制策略,实现储能系统中各电池簇间协同控制与平衡出力.经过多次充/放电过程,各电池簇的健康状态(SOH)将渐进趋于一致,进而实现不同电池簇同期退役的目的.最后,通过MATLAB软件进行仿真分析,验证了该策略可以使储能系统中各退役动力电池簇实现同期退役.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号