首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水系可充电锌/二氧化锰电池因其成本低廉、能量密度高而引起了广泛关注.然而,缓慢的反应动力学和MnO2阴极的歧化反应以及不可逆的相变现象对其发展造成了严重阻碍.在此,我们选用了Mo掺杂α-MnO2 (MoMnO2)作为阴极材料,通过铵根离子插层机制所形成的N-H…O强键合作用来稳定Mo-MnO2的2×2隧道结构,并且有效抑制了Mn3+溶解,在质子插入/脱出过程中不会引起晶格的畸变,进一步提高了其循环稳定性.获得的Mo-MnO2正极在100 mA g-1时表现出265.2 mA h g-1的高比容量和364.3 W h kg-1的能量密度.在2.0 A g-1下1000次循环后,容量保持率达95.2%.这项工作有助于深入了解非金属阳离子在电极主体材料间的键合作用,为设计具有高能量密度和长期循环能力的水系锌离子电池提供了新思路.  相似文献   

2.
可充电水系锌锰电池以高安全、低成本和对环境友好的特性在大规模储能领域有广泛的应用前景,但由于锰氧化合物自身导电差且在电池充放电过程中发生歧化反应在水中溶解,导致电池容量低、循环稳定性差。本文采用双针头对纺静电纺丝技术,结合预氧化、高温退火工艺,通过掺杂碳纳米管(CNTs)和导电炭黑(Super-P)对碳纳米纤维表面进行修饰,制备出具有凸起结构和导电网络的碳纳米纤维(CSCNFs)复合材料,再结合电化学沉积工艺,在纤维表面负载α-MnO2活性物质制备得到MnO2@CSCNFs阴极。其中,CNTs和Super-P协同构建了具有节点结构的导电网络通道,实现高效电子-离子协同传输。以MnO2@CSCNFs为阴极的电化学性能得到明显改善,初始容量达到784.8 mA·h·g-1,100圈循环后仍保持500 mA·h·g-1的放电比容量,2 A·g-1的大电流密度下仍保持290.8 mA·h·g-1的放电比容量,且当电流密度恢复到0.1 A·g<...  相似文献   

3.
钠离子电池作为新型的储能电池体系因钠资源储量丰富、成本低廉等优势有望填补锂离子电池在某些应用领域的空缺,非常适用于大规模储能领域.然而,高容量储钠负极材料仍然需要进一步研究.本文以废旧铅酸电池的回收铅和商业化硒粉为原料,采用机械球磨法制备了纳米硒化铅与碳纳米管(PbSe@CNTs)的复合材料.碳纳米管网络缠绕在PbSe纳米粒子上,可有效抑制纳米粒子的团聚,同时提高了电子导电性.纳米级的PbSe和拓扑结构的CNTs有利于电解液的渗透,缩短了Na+和电子的传输路径,缓解了脱嵌钠过程中的机械应变,提高了倍率和长循环稳定性能.PbSe@CNTs电极在20 mA g-1电流密度下具有597 mA h g-1的可逆比容量,在100 m A g-1循环100圈仍保持458.9 mA h g-1的可逆比容量,容量保持率为88%.通过X射线衍射和拉曼光谱分析,证实了PbSe的储钠机理为两步转化-合金化过程,反应方程式为PbSe+5.75Na++5.75e-?0.25Na  相似文献   

4.
用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。  相似文献   

5.
单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr2O3/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr2O3/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr2O3/C三组分复合材料高的可逆容量(在100 mA g-1的电流密度下,比容量为1351 mA h g-1)和稳定的循环性能(在500 mA g-1的电流密度下,循环300次后比容量保持在716 mA h g-1).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.  相似文献   

6.
钾离子电池(PIBs)面临的一个关键问题是设计具有先进结构的负极材料,以实现快速电荷传输以提高钾的存储性能.采用碳二亚胺铁(FeNCN)作为阳极,由于其含有一定数量的共价键且在分子水平上具有稳定的结构,使得储钾系统能够实现优异的电化学性能.FeNCN阳极具有高导电性,带隙接近0 eV,并且由于其共价键结构具有良好的结构稳定性.此外,无定形反应产物也为离子扩散提供了多种途径.因此,FeNCN阳极表现出高可逆比容量(在50 mA g-1电流密度下具有600 mA h g-1比容量),显著的倍率性能和长寿命循环(电流密度为500 mA g-1时拥有400 mA h g-1比容量且超过300次循环).通过理论模拟、X射线原位衍射分析和X射线光电子能谱分析揭示了Fe2+和K+之间的转化反应机理.此外,将FeNCN负极与苝-3,4,9,10-四羧酸二酐正极材料匹配,组装成的全电池在198.6 Wkg-1的功率密度下实现了184.7 W h kg<...  相似文献   

7.
过渡金属硫化物作为钾离子电池的高理论容量阳极,由于其电导率低、循环过程体积膨胀大,导致其倍率性能和循环稳定性较差.本文采用氧化石墨烯(GO)来控制纳米颗粒在纤维中的粒径和分布,以提高复合纤维的导电性和拉伸变形.此外,由异质结构和氧化石墨烯组成的三维导电碳网络(ZnS-CoS@GO@CNFs)可以加速钾离子储存的动力学并稳定钾离子储存.作为钾离子电池的阳极材料,该复合材料在3 A g-1下具有210 mA h g-1的优异倍率性能.在2 A g-1的大电流下经历2800次循环后仍表现出171 mA h g-1的容量,容量保持率为97.7%.此外,当纳米纤维膜用作自支撑阳极时,仍然可以保持稳定的容量输出(在0.1 A g-1下100次循环后容量为302 mA h g-1).由钾离子混合电容器组装的可折叠袋状电池在多角度重复弯曲和最终恢复的情况下仍然可以安全地工作,并且可以提供大的能量密度(134 W h kg-1)和功率密度(5815 W...  相似文献   

8.
硫化物固体电解质是发展高容量锂硫电池的理想候选者.然而,同时提高硫化物固体电解质的离子导电性、空气稳定性和电解质/电极界面的相容性仍然是一个巨大的挑战.因此,我们提出了一种双掺杂(Sb2O3和LiI)策略来制备多功能硫化物固体电解质. Sb2O3可以拓宽锂离子的传输路径和提高空气稳定性,而LiI可以抑制锂枝晶的生成和降低电解质/电极之间的电阻.因此,硫化物固体电解质在空气中和界面上的性能得到了增强,在30℃下的离子电导率为1.69×10-3S cm-1,且具有很好的空气稳定性,对金属锂也很稳定.在此基础上,组装的全固态锂硫电池以0.05 C循环100圈后,表现出较高的放电比容量(室温,833 mA h g-1; 60℃:949 mA h g-1).本文为制备实用的硫化物固体电解质和高性能全固态锂硫电池提供了合理的方案.  相似文献   

9.
有机电极材料因具有结构多样性和可持续性,在水系钾离子电池研究领域展示出广阔的前景,但它们大多数存在导电性差、易溶于电解液的问题,导致电极活性物质利用率低、循环稳定性差.本文通过含氮苯环的共轭延申、引入氰基活性中心,获得了3CN-HATN.与经#吩嗪负极相比,3CN-HATN的最低未占据分子轨道能级更低,更容易被还原,且其能带隙较窄,改善了导电性,其共轭结构可有效抑制循环过程中3CN-HATN的溶解.3CN-HATN负极在80 C (1 C=350 mA g-1)下比容量高达233.8 mA h g-1,将其与Ni(OH)2正极匹配,构建的水系钾离子全电池具备优异的循环稳定性和快充性能,30 C下循环10,000圈后容量保持率达81.5%.  相似文献   

10.
近年来,钠离子电池电极材料引起了研究者们极大的兴趣.过渡金属硒化物具有高钠离子存储容量,是一种具有前景的钠离子电池负极材料.然而,该类材料较低的电导率以及钠离子脱嵌过程中巨大的体积膨胀,导致了其较差的钠离子电池倍率性能和循环寿命.本工作采用二维的双金属有机框架材料为模板,设计制造了多孔铁掺杂NiSe2纳米片材料(Fe-NiSe2@C NSs),该结构具有充分暴露的活性位点,增强的电导率,丰富的空隙和短电子传输路径,易于适应钠离子脱嵌带来的体积膨胀应力,并具有快速的电荷转移动力学.作为钠离子电池负极材料时,Fe-NiSe2@C NSs表现出高比容量(5 A g-1电流密度下为302 mA h g-1)和优异的循环稳定性(5 A g-1的电流密度下循环1000圈容量保持率为99%).此外,该材料在与Na3V2(PO4)2O2F正极材料组成的钠离子全电池...  相似文献   

11.
采用直流电弧等离子体法在甲烷和氩气混合气氛下原位合成碳化钛(TiC)纳米颗粒。X射线衍射、透射电子显微镜等物理表征结果显示TiC纳米颗粒粒径约为40~90 nm的立方体结构。循环伏安(CV)测试表明,TiC纳米颗粒兼具高效的氧还原和氧析出双效催化活性,可有效弥补炭材料氧析出催化活性较弱的缺陷。恒流充放电测试结果表明,相对于普通炭材料(导电炭黑,Super-P),TiC纳米颗粒催化剂可将锂空电池充电过电势降低280mV;在电流密度(isp)为50mA·g-1时,首次放电比容量达1267mAh·g-1;即使在较高的电流密度150mA·g-1下,比容量仍保持在778mAh·g-1,体现了良好的倍率性能。在电流密度为100mA·g-1、限定比容量为500mAh·g-1下,稳定循环10次。通过XRD、红外、扫描电镜表征可知,在TiC纳米颗粒的双效催化作用下,Li_2O_2的生成与分解具有良好的可逆性,有效避免了大量反应副产物积累的问题,进而提高锂空电池的电化学性能。  相似文献   

12.
与液态电解质相比,聚合物电解质(SPEs)具有更高的安全性,在储能领域具有广阔的应用前景.但是其高压下易分解、室温离子电导率低、室温循环性能差等问题阻碍了SPEs的应用.本研究以丙烯酸三氟乙酯和碳酸乙烯亚乙酯为原料,丁二腈为增塑剂,原位聚合制备了氟化聚碳酸酯基固态电解质SNSPE-40.SNSPE-40在25℃条件下离子电导率高达1.33 mS cm-1,电化学窗口达到5.4 V.得益于富含氟化锂的SEI层的形成,Li|SNSPE-40|Li电池以0.1 mA cm-2电流密度稳定循环了2000 h.在4.5 V截止电压和室温条件下,Li|SNSPE-40|LiNi0.9Co0.05-Mn0.05O2电池实现了0.5 C(1 C=220 mA g-1)倍率300圈的稳定循环(57.4%容量保持率).Li|SNSPE-40|LiCoO2电池实现了1 C(1 C=200 mA g-1)倍率250...  相似文献   

13.
有机电极具有结构可设计性强、容量大、可容纳大离子等优点.然而,在钠离子电池中,有机电极材料的容量仍然很低,且其在有机电解质中的高溶解度导致其寿命较短.如何通过化合物设计来提高其性能一直是研究人员关注的问题.本研究通过简单方法将氨基酸接枝到有机化合物上,提高了其容量和循环稳定性.首先,氨基酸之间的氢键使其形成更稳定的层状结构;氨基酸基团在有机电极材料和羧甲基纤维素粘合剂之间形成分子间相互作用,降低界面阻力,显著提高循环稳定性,使得钠离子电池循环次数超过2000次.其次,实验和计算结果表明,氨基酸基团提供了Na+转运途径和额外的可逆存储位点,从而提高了比容量(~300 mA h g-1).本策略可以启发未来钠离子电池的有机分子设计.  相似文献   

14.
具有电化学变色功能的柔性电池在智能电子领域显示出巨大的应用潜力.然而,具有可视化电量预警功能的镍锌电池目前尚未见报道.在此,我们设计了一种用于柔性镍锌电池的电致变色镍钴氢氧化物/镍/氧化铟锡(NiCo BH/Ni/ITO)柔性电极.通过优化Ni层厚度,电极在电流密度为0.1 mA cm-2时,着色效率为5 9.8 9 cm2C-1,容量为7.1 5μA h cm-2.相应组装的电致变色镍锌电池功率密度为160μW cm-2时,能量密度为12.69μW h cm-2,优于部分文献报道的透明柔性超级电容器和电致变色电池.值得注意的是,组装的镍锌电池在充放电过程中显示出可逆的颜色变化,提供了一种可视化监测电池剩余电量的新功能.  相似文献   

15.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

16.
利用微胶囊技术将酚醛树脂包覆于纳米硅表面,然后在氩气保护下高温炭化,制得硅炭复合负极材料。首先采用4种不同质量比的酚醛树脂与纳米硅制备了硅碳复合材料,得到了不同炭质厚度的硅碳复合材料。通过对其循环性能和倍率性能的比较,发现酚醛树脂与纳米硅的质量比为1∶4,即碳层厚度为4.5 nm时,电化学性能最佳。随后对该种硅碳复合材料的综合电化学性能进行了测试,该材料作为负极制备的锂离子电池具有良好的电化学性能,在电流密度为100 mA g-1的条件下,其首次放电比容量为2 382 mAh g-1,首次充电比容量为1 667 mAh g-1,首次库伦效率为70%。经200次充放电循环后放电比容量为835.6 mAh g-1,库伦效率为99.2%。此外,其倍率性能非常优异,在100、200、500、1 000、2 000及100 mA g-1电流密度下,其平均放电比容量分别为1 716.4、1 231.6、911.7、676.1、339.8及1 326.4 mAh g-1...  相似文献   

17.
锂金属负极因具有较高的理论容量和最低的氧化还原电位有望成为下一代电池负极材料,而严重的锂枝晶生长阻碍了其实际应用.本文中,我们制备了Li3P纳米片和Ni纳米颗粒修饰的泡沫镍结构作为无枝晶锂金属负极的三维骨架.其中Li3P纳米片表现出优异的锂离子电导率和优异的亲锂性,三维镍骨架可提供足够的电子电导率并确保结构稳定性.由该负极组装的对称电池具有低电压滞后和长循环稳定性(在20 mA cm-2和10 mA h cm-2下电镀/剥离循环500次后的电压滞后为104.2 mV).同时,由该负极和商用LiFePO4正极配对的全电池具有较好的循环稳定性(180次循环后的比容量为124.6 mA h g-1,对应容量保持率为90.8%).这种方法制备的三维电子离子共导亲锂骨架为高电流密度下无枝晶锂负极提供了一种潜在的可扩展选择.  相似文献   

18.
低容量和低倍率限制了电池型超级电容阳极材料的大规模应用.本文通过构建一种具有半共格异质界面特性的Fe2O3/FeSe2纳米结构作为先进的阳极材料来解决这一瓶颈.系列表征和第一性原理计算表明,这种特殊的异质界面不仅能自发产生较强的内建电场,从而提高电子传递速率和OH-离子的吸附能力;还可使得活性物质与OH-之间发生更多的氧化还原反应,并且使该反应体系更容易进行.基于上述优势,所制备出的阳极材料的最大比容量为199.2 mA h g-1(1 A g-1),并且在10 A g-1下仍能保持105.8 mA h g-1,同时,经历5000次循环后,其比容量可维持初始值的90.2%.此外,以Fe2O3/FeSe2作为阳极组装的非对称超级电容器在0.8 kW kg-1时的能量密度为52.55 Wh kg-1,即使经历...  相似文献   

19.
水系锌基电池具有低成本和高安全性的优点,是很有潜力的储能技术.然而,枝晶、副反应和较差的低温性能限制了其实际应用,这与电解液的溶液组成密切相关.在本工作中,我们通过调控丙二醇电解液的溶剂结构及键相互作用,有效抑制了锌枝晶和副反应.丙二醇具有较高的电子云密度和DN (Donor number)值,可以破坏水分子间和水分子与Zn2+间的相互作用,从而提高H–O共价键的强度,降低水活性和冰点,改变Zn2+的溶剂化结构.制备的电池器件表现出高的循环稳定性(Zn//Zn电池循环超过1000 h),高可逆性(库伦效率达到98.9%),高储锌性能(在5 A g-1下比容量为225 m A h g-1,循环5000圈容量保持率为9 2.6%)和优异的防冻性能(在-2 0°C下循环5 0 0圈比容量为190 m A h g-1).本工作为高性能水系锌离子电池的发展提供了一种有前景的策略.  相似文献   

20.
生物质多孔碳材料因来源广泛、性价比高,被广泛应用在锂离子电池中,而制备过程中使用的活化剂对材料储锂性能影响较大。因此,以大豆壳为碳源,在不同工艺条件下制备多孔碳材料,通过结构表征和电化学性能测试,考察活化剂对多孔碳材料储锂性能的影响。研究表明:(1)当电流密度为185 mA·g-1,电压范围为0~3.0 V时,经CaCl2活化的多孔碳材料(DK-CaCl2)的首次放充电比容量为639.0/269.5 mA·h·g-1,而KOH活化的多孔碳(DK-KOH)的首次放充电比容量为986.7/307.5 mA·h·g-1;(2)大豆壳∶KOH的质量比分别为1∶2、1∶4和1∶8时,得到的多孔碳的首次放充电比容量为544.9/136.8、986.7/307.5和375.1/93.4 mA·h·g(-1),200次循环后放电比容量分别为88.8、318.9和94.7 mA·h·g-1。这说明不同活化剂及不同活化比例制备的多孔...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号