首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary objective of this research project was to compare the tool wear resulting when a semi-synthetic cutting fluid was used, to that from use of a premium soluble oil. The secondary objective was to determine the effects of cutting speed, drill diameter, and fluid concentration, on tool wear. The experiments contained two key elements: (1) cast aluminium alloy 390 was used as the workpiece material and (2) deep-hole drilling to a depth greater than two diameters was performed. Numerous drilling tests were performed with each cutting fluid using a flood application. To meet the primary objective, an experiment was designed for each cutting fluid and the wear on the lands of twist drills was measured. The secondary objective utilized a statistically-designed 23 factorial experiment which evaluated the effects that moderate and relatively high cutting speeds, two drill diameters, and two levels of fluid concentration, had on tool wear. After analysis of the test results, it was concluded that concentration had the most significant effect on land wear when the experimentally-formulated semi-synthetic cutting fluid was used. Cutting speed was the most significant factor when drilling with the commercially-available premium soluble oil. Tool wear while using the semi-synthetic fluid was slightly less than that for the premium soluble oil.  相似文献   

2.
HIGH THROUGHPUT DRILLING OF TITANIUM ALLOYS   总被引:2,自引:0,他引:2  
The experiments of high throughput drilling of Ti-6Al-4V at 183 m/min cutting speed and 156 mm3/s material removal rate using a 4 mm diameter WC-Co spiral point drill are conducted. At this material removal rate, it took only 0.57 s to drill a hole in a 6.35 mm thick Ti plate. Supplying the cutting fluid via through-the-drill holes and the balance of cutting speed and feed have proven to be critical for drill life. An inverse heat transfer model is developed to predict the heat flux and the drill temperature distribution in drilling. A three-dimensional finite element modeling of drilling is con-ducted to predict the thrust force and torque. Experimental result demonstrates that, using proper machining process parameters, tool geometry, and fine-grained WC-Co tool material, the high throughput machining of Ti alloy is technically feasible.  相似文献   

3.
对切削液油雾产生的机制进行理论分析,并对切削液油雾形成的影响因素进行实验研究。实验在密闭的车床内进行,利用车床的供液系统采用浇注式供给磨削液,在油雾产生密集区域内安装有磨削液雾滴粒径的测量装置,该装置中的共聚焦显微镜可观察切削液雾滴在空气中的分布,精确扫描单颗雾滴的形态轮廓,通过计算机可计算出雾滴的分布和直径尺寸。分别控制主轴转速和切削液流量,探究对所形成的油雾浓度和平均直径的影响。实验结果表明:金属加工过程中主轴转速和切削液流量对切削液油雾特性的影响显著,随着主轴转速的增加,油雾的平均直径减小,而油雾浓度却呈上升趋势;随着切削液流量的增加,油雾的平均直径变大,并且油雾浓度同样呈上升趋势。  相似文献   

4.
Abstract

Hole-making is one of the most important processes of metal shaping domain. Although, drilling is a commonly used approach to cut holes in metallic parts, the process cannot be completed with the cutting action of one drill bit if the work material is hard and diameter of the hole is large. Usually, a drill having diameter equal to the required diameter of the hole is utilized to enlarge a predrilled hole of a smaller diameter. In this work, we have investigated sustainability of using another method of enlarging a pre-drilled hole, namely side and end milling and compared it with the drilling-based approach. The work material used in the study is a high carbon steel, which is heat-treated to two distinct levels of surface hardness. Besides process type and work material hardness, the other two parameters tested in the investigation are cutting speed and depth of hole. A total of 16 experiments were performed to generate data regarding the sustainability measures, namely hole surface roughness, specific cutting energy and tool wear. Process choice (drilling or milling) for hole-enlargement was found to possess a significant effect on all the measured responses. Analyses carried out on the experimental data revealed that although the drilling-based option led to an immensely better surface finish, the milling-based option performed better with respect to the other measures of economic and environmental sustainability.  相似文献   

5.
The primary objective of this research was to develop relationships which predict tool wear from measured cutting forces. Different cutting speeds and feed rates were examined. The workpiece materials used were a medium-carbon steel and a titanium alloy. A synthetic cutting fluid was used with a 9.525 mm drill and a 6.350 mm drill, for drilling the medium-carbon steel and the titanium alloy, respectively. Preliminary testing was conducted to find the optimal values for cutting speeds and feed rates. The main drilling tests were performed using the cutting conditions resulting from the preliminary tests. Statistical analysis of the results of the main drilling tests showed that the axial force was significant at the 5 per cent level in models for both materials. It also showed that the moment about the vertical axis was significant at the 5 percent and the 15 per cent levels in the models for the titanium alloy and the medium-carbon steel, respectively. The model for the smaller holes drilled into the more homogeneous material, the titanium alloy, was more accurate in predicting tool wear.  相似文献   

6.
The effect of the cutting parameters on performance of WEDM   总被引:1,自引:0,他引:1  
In this study, variations of cutting performance with pulse time, open circuit voltage, wire speed and dielectric fluid pressure were experimentally investigated in Wire Electrical Discharge Machining (WEDM) process. Brass wire with 0.25 mm diameter and AISI 4140 steel with 10 mm thickness were used as tool and work materials in the experiments. The cutting performance outputs considered in this study were surface roughness and cutting speed. It is found experimentally that increasing pulse time, open circuit voltage, wire speed and dielectric fluid pressure increase the surface roughness and cutting speed. The variation of cutting speed and surface roughness with cutting parameters is modeled by using a regression analysis method. Then, for WEDM with multi-cutting performance outputs, an optimization work is performed using this mathematical models. In addition, the importance of the cutting parameters on the cutting performance outputs is determined by using the variance analysis (ANOVA).  相似文献   

7.

A recent trend on turning of difficult-to-machine (DTM) materials using environmentally friendly vegetable oil has became popular due to its immense machinability aids. Conventional cutting oils fail to give cooling/lubrication at higher cutting speed-feed combination and create environmental pollution. The present work investigated the effect of molybdenum disulphide nanoparticle (nMoS2) dispersed in castor oil, as a cutting fluid, sprayed using minimum quantity lubrication (MQL) technique on turning of AISI O1 cold worked tool steel. The machining was carried out by varying the speed ranging from 110–170 m/min, a feed rate of 0.02-0.08 mm/rev and depth of cut of 0.7 mm. PVD-TiAlN coated tungsten carbide insert was used for the experimentation. The experimental results of nMQL condition were compared with the dry and wet condition. The results proved that application nMQL has given 15–49 % enhanced tool life with better surface finish as compared with dry and wet condition, respectively. No major phase change occurs in nMQL when compared with other conditions because of their low cutting temperature.

  相似文献   

8.
In place of the traditional methods of finishing a surface, the ball-burnishing process was investigated. Experimental work was conducted on a vertical machining center to establish the effects of various burnishing parameters on the surface finish of ASSAB XW-5 steel (high-carbon, high-chrome steel), including burnishing speed, ball material, lubricant, burnishing forces (depth of penetration), and feed. Within the parameter space explored, it was found that the burnishing speed affects the surface finish, with a burnishing speed of 1,200 mm/min giving the worst surface finish. WC (Tungsten carbide) ball gave the best and most consistent surface finish. Grease was a better lubricant than cutting oil. By varying the burnishing speed, the burnishing forces varied also, and these forces showed no obvious relationship to the surface finish of the burnished workpiece.  相似文献   

9.
The present study reports the results of an experimental work carried out to evaluate the improvement in machined surface properties of die steels machined using powder mixed electric discharge machining (PMEDM) process. Two surface responses, surface finish and microhardness were analyzed for changes when machined with Si, W and graphite powders mixed in dielectric fluid. The machined surfaces were subsequently analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) to study the element migration from powder, dielectric and the tool. The powder mixed with dielectric and its concentration, current and pulse on time were identified as the significant factors affecting surface finish. Brass electrode and tungsten powder resulted in good surface finish. Amongst the dielectrics used, kerosene provided a better cooling effect whereas EDM oil resulted in better surface finish. The microhardness of the machined surface was also affected by powder and its concentration, current, pulse on time and electrode material. W-Cu electrode and W powder resulted in a higher microhardness. The SEM and EDS analysis showed significant migration of material from the suspended powder, electrode and dielectric to the machined surface.  相似文献   

10.
Machining of titanium alloys generate very high temperature in the cutting zone. This results in rapid tool wear and poor surface properties. Therefore, improvement in cutting performance in machining of titanium alloys is very much dependent on effectiveness of the cooling strategies applied. In the present work, performance of nanofluid using multiwalled carbon nanotubes (MWCNTs) dispersed in distilled water and sodium dodecyl sulfate (SDS) as surfactant is evaluated for turning operation on Ti–6Al–4V workpieces. Turning operations were carried out under three different conditions – dry, with conventional cutting fluid and with nanofluid. Nanofluid application was limited to 1 L/h and it was applied at the tool tip through gravity feed. Various machining responses like cutting force, surface finish and tool wear were analyzed while turning at optimum cutting parameters as 150 m/min, 0.1 mm/rev and 1 mm depth of cut. Later on, machining performance of nanofluid is confirmed at low cutting speed of 90 m/min. Nanofluid outperformed conventional cutting fluid with 34% reduction in tool wear, average 28% drop in cutting forces and 7% decrease in surface roughness at cutting speed of 150 m/min.  相似文献   

11.
微细干车削硬铝合金LY12的表面粗糙度研究   总被引:3,自引:0,他引:3  
采用YG类细晶粒硬质合金刀具和PCD刀具对硬铝合金LY12进行了微细干切削试验,通过单因素切削试验研究了不同刀具材料、刀具前角、刀尖圆弧半径对表面粗糙度的影响。结果表明,在微细干切削条件(v=12.6m/min,aP=0.02mm,f=0.004-0.01mm/r)下,采用PCD刀具可获得Ra0.112~0.30μm的光洁表面;采用大前角、大刀尖圆弧半径的PCD刀具,可获得最好的加工表面粗糙度。  相似文献   

12.
An attempt has been made in this paper to determine the optimal setting of slab milling process parameters. Four process parameters, i.e. cutting fluid, cutting speed, feed and depth-of-cut each at three levels except the cutting fluid at two levels, were considered. The multi-performance characteristics of the process were measured in terms of surface integrity defined by surface roughness, surface strain and micro-hardness of the work-piece. Eighteen experiments, as per Taguchi’s?L18 orthogonal array, were performed on high-strength low-alloy steel. Grey relational analysis, being a widely used technique for multi-performance optimization, was used to determine Grey relational grade. Subsequently, Taguchi response table method and ANOVA were used for data analysis. Confirmation experiment was conducted to determine the improvement in the surface integrity using this approach. Results revealed that machining done in the presence of cutting fluid, at a cutting speed of 1,800 r.p.m. with a feed of 150?mm/min and depth-of-cut of 0.23?mm, yielded the optimum multi-performance characteristics of the slab milling process. Further, the results of ANOVA indicated that all four machining parameters significantly affected the multi-performance with maximum contribution from depth-of-cut (33.76%) followed by feed (24.02%), cutting speed (16.29%) and cutting fluid (13.21%).  相似文献   

13.
An investigation is described of the lubricating effects of various grinding fluids at both normal and high wheel speeds under geometrically similar conditions. Grinding fluids include air (dry), water, soluble oil in two concentrations, and cutting oil. Results indicate that the specific cutting energy and the attritious wear of the abrasive grains are reduced by lubrication, but the rubbing friction between the workpiece and the wear flats on the grains is not. With high wheel speed, the specific cutting energy is lower with all grinding fluids than with normal wheel speed, but the attritious wear rate is greater. These lubricating effects are related to results for G-ratio, surface finish, and burning conditions.  相似文献   

14.
Roughness and sphericity are two important factors affecting friction and lubrication performance of femoral heads of hip implants. Precision finishing of femoral heads is therefore crucial. This paper presents the effect and optimisation of key machining parameters in finish turning of metallic femoral heads, with an aim to achieve the best surface roughness and sphericity. Three important machining variables—cutting speed, feed rate and depth of cut—were considered. According to Taguchi methodology, a factorial design of experiments was planned to capture the effect of machining variables. A series of single-pass finish turning tests was conducted on a 28-mm femoral head made of biomedical grade stainless steel AISI 316 L by using tungsten carbide inserts. We used the analysis of variance (ANOVA) to elucidate the influence of the dominant parameters, which led to derive a regression model and response surface to estimate the desired machining responses. The results suggest that, among all cutting parameters, feed rate affects significantly surface roughness, while both feed rate and depth of cut are the dominant factors impacting markedly sphericity. Using desirability function-based criteria, single response and multiresponse optimisations were performed to determine an optimum combination of machining parameters. The objective was to maximise the desirability under the given range of parameters. Optimisation results show that cutting speed of 280.02 m/min, feed rate of 0.1 mm/rev and depth of cut of 0.2 mm are the optimum set, which is expected to provide minimum surface roughness and sphericity of the finished femoral heads. The parameters are thus expected to minimise further polishing time and improve manufacturing productivity.  相似文献   

15.
In this study, the optimization of the cutting parameters on drill bit temperature in drilling was performed. Al 7075 work piece and the uncoated and Firex® coated carbide drills in the experimental were used. The optimization of the cutting parameters was evaluated by Taguchi method. The control factors were considered as the cutting speed, feed rate and cutting tool. Taguchi method was used to determining the settings of cutting parameters. The L18 orthogonal array was used in experimental planning. The most significant control factors affected on drill bit temperature measurements was obtained by using analysis of variance (ANOVA). Taguchi design method exhibit a good performance in the optimization of cutting parameters on drill bit temperature measurements. In addition, the empirical equations of drill bit temperatures were derived by using regression analysis. The obtained equations results compared with the drill bit temperature measurement results. The empirical equations results indicated a good agreement with experimental results.  相似文献   

16.
This research studies the sustainable and high-throughput drilling of compacted graphite iron (CGI), a high strength, lightweight material for automotive powertrain applications. CGI drilling experiments were conducted using a 4 mm diameter coated carbide drill at 26.5 mm/s feed rate. In two repeated tests under three lubrication conditions: dry, dry with through-the-drill compressed air, and through-the-drill minimum quantity lubrication (MQL), the drills were able to produce a maximum of 1,740, 3,150 and 2,948 holes, respectively, before the breakage of the drill. The Joule–Thomson effect due to the expansion of high pressure air from through-the-drill holes at the drill tip, chip shape, chip size and chip speed are investigated. Flank wear of the drill cutting edge is measured and results are correlated to drill life. Results indicate that dry machining of CGI is technically feasible. Chip evacuation and advanced tool cooling are important factors that affect drill life for high-throughput sustainable dry drilling of CGI.  相似文献   

17.
在石油钻井中,扭矩作为钻井振动间接测量参数,受地层、钻头、钻具结构、井眼形状、钻压、转速、泵冲、钻井液性能以及地面机械因素的影响。本文就钻柱实际受力与变形分析中出现的扭矩加载问题进行了研究,给出了加载扭矩的详细方法和步骤,并运用 APDL 语言编写了相应程序,为结构受力与变形分析提供了依据。  相似文献   

18.
The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41–0.45 m/min and cutting fluid pressure ranging 2–3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.  相似文献   

19.
D.M. Turley 《Wear》1985,104(4):323-335
Under conventional grinding conditions redeposition which degrades surface finish occurs when grinding titanium and a titanium alloy (Ti-6Al-4V). To prevent redeposition and hence to obtain optimum surface finish the following grinding conditions are required: a soft grade (H) silicon carbide wheel running at 10 m s?1, a sulphur-chlorinated cutting oil grinding fluid and a relatively high table speed (0.2 m s?1), and the wheel should be re-dressed prior to taking the finishing passes (about ten) at a wheel downfeed of 2.5 μm.  相似文献   

20.
An extensive study was performed in finish turning of the following microalloyed steels: as received (14.3 HRc), water-cooled (44.9 HRc), air-cooled (14.41 HRc) and furnace-cooled (9.1 HRc). The turning tests were carried out using multi-layer coated cemented carbide tools at four different cutting speeds (60, 90, 120, and 150 m/min) while feedrate and depth of cut were kept constant at 0.1 mm/rev and 1 mm, respectively. The influences of workpiece microstructure and cutting speed on cutting forces and workpiece surface roughness were investigated. The worn parts of the cutting tools were also examined under a scanning electron microscope (SEM). The results showed that cutting speed significantly affected the machined surface roughness values. However, cutting forces were not influenced significantly by workpiece microstructure and cutting speed except for water cooled specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号