首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高熵合金(HEA)由于其在恶劣环境中优异的力学性能引起了研究者的广泛关注.我们将高熵合金NbMoTaW引入到纳米叠层材料中,制备出等层厚的Cu/HEA纳米多层膜,综合研究了其具有尺寸效应的力学性能及变形行为.实验表明,Cu/HEA纳米多层膜的硬度随着层厚h的减小而增加,随后在h≤50 nm的区域到达一个平台,而应变速率敏感性出现了一个最大值,这是由于Cu和HEA两相对应变速率敏感性的影响从协同转变为竞争.在层厚较大时,非共格界面导致Cu/HEA多层膜在变形后出现了剪切带,并且软相Cu层主导变形.  相似文献   

2.
金属纳米微粒的尺寸效应   总被引:1,自引:0,他引:1  
在假定金属纳米微粒是球形的基础上,综述了金属纳米微粒的基本表征量、结合能、晶格参数、空位形成能和空位体积的尺寸效应,提出一个形状因子来描述非球形纳米微粒的形状对性能的影响,并对以后的研究进行了展望。  相似文献   

3.
高熵合金的多组分特性使其具有许多传统合金无法比拟的优异性能.然而,高熵合金传统的制备方法仍存在一定的局限性.激光选区熔化(SLM)技术可以通过逐层沉积的方式实现复杂零件的精密成形.将SLM技术与高熵合金相结合,可以充分发挥高熵合金的性能优势.本文综述了SLM制备的高熵合金的显微结构和性能特征.由于SLM工艺存在高温梯度和高冷却速率,所以在SLM制备的高熵合金中通常会形成复杂的微观结构,包括胞状亚结构、析出相、层错和纳米孪晶.此外,独特的微观结构为高熵合金带来了优异的力学性能和其他功能,表明利用SLM技术制备高熵合金具有很大的发展潜力.此外,我们还简要介绍了SLM制备的高熵合金的微观缺陷及其应用.本文为高性能高熵合金的设计提供了有益的指导.  相似文献   

4.
本文概括总结了传统超高强度钢的强韧化机制,针对2 GPa以上超高强度钢强韧性匹配不足、成本昂贵等突出问题,提出了最小化晶格错配和强有序效应以发展新型超强金属材料,并协同利用高密度共格粒子、高密度位错、弹性畸变中心等多重效应,克服传统共格析出强化合金低塑韧性问题,实现超高强度钢良好强韧性匹配.  相似文献   

5.
本文系统研究了单晶L12强化富Co高熵超合金Co41Ni35Al11.5-Ta2.5Cr4Ti6 (at%)在空气中800, 900和1000°C下的氧化行为.结果表明,该合金在800至1000°C范围内均表现出优异的抗氧化性.其中,在800°C氧化后,合金表面形成了双层氧化膜,由TiO2/Al2O3混合层和Cr2O3层组成.连续但不致密的Cr2O3层不能有效抑制内部氧化和内部氮化.在900和1000°C时形成复杂的分级结构氧化膜,主要成分为尖晶石、Cr2O3、TiTaO4和Al2O3.值得注意的是,在900至1000°C的温度范围内发现抗氧化性出现了反常提高.具体来说,在1...  相似文献   

6.
高熵合金作为金属材料领域近年来的三大突破之一,其开拓性地打破了传统合金设计理念的思想囚笼,适当配比的高熵合金可制得具有高强度、高耐磨性及耐蚀性等优异性能的合金材料。Fe、Co、Cr、Ni四种元素在高熵合金体系中研究得最为广泛,并得到一定的研究成果。从CoCrFeNi-M系高熵合金的结构与相变特点切入,介绍了高熵合金的结构分类特点,分析了高熵合金相形成及其规律,阐述了合金元素对铸态高熵合金相结构的影响,探讨了高熵合金的热处理过程。最后,总结了高熵合金的研究现状及其存在的问题。  相似文献   

7.
新一代合金——高熵合金的出现,揭示了熵效应在合金设计中的重要意义.受这一概念的启发,轻质铝基熵合金这一概念被提出.随着对低密度结构材料的需求不断增加,这些新型合金在各种应用中具有巨大的潜力.本文综述了轻质铝基熵合金的发展背景、设计原理、制造方法、微观结构和力学性能、高温应用,及其发展前景.通过对当前研究的全面调查,本文重点研究分析了122种密度低于4.0 g cm-3的铝基熵合金.轻质铝基熵合金可以弥补传统铝和钛合金在机械性能和密度方面的差距.轻质铝基熵合金优异的热稳定性使其有望成为在高温下使用的结构材料.此外,本文还讨论了轻质铝基熵合金领域的未来发展趋势.机器学习作为有效计算工具,可以极大地提高合金的开发效率.  相似文献   

8.
开发钙钛矿叠层太阳电池是一种可以突破单结太阳电池Shockley-Queisser极限的光伏技术.令人鼓舞的是,所有钙钛矿叠层器件,包括钙钛矿/硅、钙钛矿/钙钛矿、钙钛矿/铜铟镓硒和钙钛矿/有机叠层电池,都表现出比相应单结太阳电池更高的效率,显示出巨大的进一步突破的潜力.在叠层器件中,电荷传输材料是钙钛矿子电池的重要组成部分,它直接决定了器件的电荷传输和能量损失.一般来说,高导电性和透光性、良好的能级和化学稳定性是电荷传输材料叠层应用的关键.迄今为止,导电金属氧化物、有机分子、聚合物、富勒烯、自组装材料等各种电荷传输材料已被广泛应用于高效叠层电池.在本文中,我们首先总结了不同类型钙钛矿叠层电池的电荷传输材料的最新进展,详细讨论了材料的电学和光学性质及其对器件性能的影响.在此基础上,我们提出了叠层电池中电荷传输材料进一步发展所面临的挑战和展望.本综述将为不同钙钛矿叠层太阳电池的器件设计提供有效指导.  相似文献   

9.
金属纳米叠层材料由于不仅可以调整其组元几何尺寸和微观结构尺度?而且可以引入具有不同本征性能的组元材料和不同结构的层间异质界面?在获得高强韧与高辐照损伤容限金属结构材料方面具有潜在的能力?结合当前国内外有关金属叠层材料力学性能与辐照特性尺寸效应研究的最新进展?分别阐述了晶体/晶体Cu/Mo与晶体/非晶Cu/Cu ̄Zr金属叠层材料He+辐照前后的结构演变与力学特性?揭示了上述两类金属叠层材料的强化与损伤机制的异同?并对高辐照损伤容限纳米叠层材料研究的发展趋势进行了展望?  相似文献   

10.
氢能作为一种清洁能源,已成为全球能源战略的重要组成部分,也是实现全球“碳中和”的必要途径之一.在可再生电力的驱动下,水电解法有望成为实现“零碳”排放的一种理想的长期制氢方法.与传统合金相比,高熵合金由于其独特的结构特征,包括占位无序和晶格有序,可提供更多的催化活性位点.它们在水解催化剂领域具有广泛的应用前景.本文综述了电解水的机理、水解过程中高熵合金的催化原理,以及高熵合金作为电解水催化剂的最新研究进展.总结了新型高熵合金设计方面存在的难点及其应用潜力,重点讨论了高熵合金在水解催化过程中表面形态和催化活性之间的联系.最后归纳了高熵合金的组成调控及其在水电解等新兴领域的可能应用前景.  相似文献   

11.
随着电子设备的产热不断攀升,在确保设备性能和寿命方面,高效散热已成为一个关键的技术问题,高的导热性通常取决于填料在复合材料中形成快速导热通道的能力。近年来,在复合材料中利用高导热性填料开发三维互连结构已成为一种很有前途的方法。与传统的均匀分布和定向排列相比,填料的三维互连结构显著提高了复合材料的热导率。本文综述了三维互连结构的炭材料增强金属基导热复合材料的研究进展,讨论了复合材料的导热机理和导热模型,分析了提高复合材料导热性能的关键因素。本文通过回顾这些独特的构建三维互连炭材料网络的形式及其对复合材料导热性能的影响,旨在为进一步开发高性能金属基导热复合材料提供参考。  相似文献   

12.
通过表面防护涂层技术制备综合力学性能与摩擦性能优异的涂层材料,对降低构件因碰撞摩擦磨损所引起的损伤失效问题十分重要。相较于单层膜结构防护涂层,金属纳米多层膜涂层材料由于其微观组织结构的独特性与可控性,表现出优异的服役特性,且其综合性能可通过结合新组元或界面调控得到进一步提高,因此该类材料受到了广泛关注。新颖的成分设计理念使得高熵合金具有独特的四大效应,即高熵效应、晶格畸变效应、迟滞扩散效应和性能鸡尾酒效应,进而呈现出良好的综合性能。因此,在传统的双金属纳米多层膜结构材料中引入高熵合金组元,形成金属/高熵合金纳米多层膜,有望突破传统金属纳米多层膜的性能局限,极大地提高多层膜结构材料的力学性能。从功能基元序构的视角,围绕近几年金属/高熵合金纳米多层膜的相关研究,首先介绍了其制备方法和工艺原理,针对功能基元微观结构特征,从晶粒形貌、界面结构、组元成分等方面进行了阐释,在此基础上论述了其力学行为以及相应的内在机制,并提出了调控金属/高熵合金纳米多层膜力学性能的优化策略,最后对金属/高熵合金纳米多层膜的未来研究方向和面临的挑战进行展望。  相似文献   

13.
随着吸波材料在军事隐身技术中的应用与发展,对其性能提出了更高的要求,开发符合“薄、轻、宽、强”且环境适应性强的吸波材料成为当前研究的热点。高熵合金独特的多主元、高浓度成分组成使之具有成为吸波材料的天然优势,其优异的软磁性、耐腐蚀性、抗氧化性等综合性能为发展新型吸波材料提供了研究基础。高熵合金吸波材料可以通过主元种类和浓度调节,微量元素添加以及与其他材料复合等多种调控方法来提高吸波性能。综述高熵合金吸波材料的研究进展,从材料的制备方法出发,对其吸波性能的影响因素进行详细的讨论,最后对高熵合金吸波材料的未来研究方向作出展望。  相似文献   

14.
电子陶瓷材料的纳米尺寸效应、纳米技术以及代表纳米特征的相关特征技术变得日益重要。本文讨论了电子陶瓷材料领域的纳米技术研究进展以及将来的发展趋势。首先阐述了纳米氧化物陶瓷的尺寸效应,然后讨论纳米结晶陶瓷的制备方法和应用,最后叙述在纳米技术与半导体技术发展中并驾齐驱的集成陶瓷薄膜技术的发展趋势。  相似文献   

15.
耐腐蚀性能差限制了大多数软磁材料在腐蚀环境中的应用,尤其是海洋环境.因此,提高软磁材料的耐腐蚀性能是其在海洋环境工业应用的关键.然而,磁性能和耐腐蚀性能之间存在矛盾关系,耐腐蚀性能的主要贡献元素Cr的反铁磁性会严重损害合金的磁性能.本研究开发了一种兼具优异力学性能和耐腐蚀性能的软磁高熵合金(Fe2.25Co1.25Cr)94Al6,其综合性能优于绝大多数已报道的传统和高熵合金软磁材料.该合金的饱和磁化强度高达141.88 emu g-1,矫顽力仅有2.9 Oe;其在模拟海水中的耐腐蚀性能优于大多数已报道的软磁高熵合金和传统304不锈钢;同时,该合金还具有优异的力学性能,屈服强度高达1.1 Gpa,压缩断裂延伸率超过33%,硬度高于469 HV.这种新型的耐蚀软磁高熵合金有望满足海洋环境中的使役要求,解决软磁材料在海洋腐蚀环境下的使役难题.  相似文献   

16.
难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti3Zr1.5Nb((1-x))-MoxVAl0.25 (x=0.1, 0.3, 0.5,标记为Mo0.1, Mo0.3和Mo0.5)合金,这些合金都具有良好的拉伸延展性和低于6 g cm-3的密度.高剪切模量Mo元素的引入促进了晶格畸变,从而提高了合金中的晶格摩擦应力以及屈服强度.铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服强度,以及大于15%的断裂延伸率. Labusch模型计算结果表明,原子尺寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著.通过观察变形微观组织发现,由于存在高密度的位错界面,扭折带、位错壁以及泰勒晶格的形成能有效提高合金的应变硬化能力,使合金在展现高强度的同时保持足够的延展性.该研究...  相似文献   

17.
针对近年来纳米复合相变材料的发展现状,重点指出了纳米复合相变材料的生物效应与生态环境效应,提出了降低纳米复合相变材料毒性的措施。为促进纳米科技的持续健康发展提供有实用价值的技术支持。  相似文献   

18.
采用Fluen软件对纳米颗粒强化相变蓄冷特性进行了数值模拟,重点分析纳米粒子添加量和Gr数对蓄冷性能的影响,并解释其换热机理。研究结果表明:纳米颗粒的体积分数是影响纳米颗粒强化相变材料结冰时间的一个主要因素,但Gr数对其结冰时间影响不大。对于一给定的Gr数,随着纳米粒子体积分数的增加,结冰时间减少,纳米粒子体积分数为1.0%时,纳米颗粒强化相变材料的结冰时间降低了16.3%。这是由于纳米颗粒强化相变材料具有较高的导热系数。另一方面,由于纳米颗粒强化相变材料融解潜热降低,则纳米颗粒强化相变材料结冰时,每单位质量的纳米颗粒强化相变材料需要的能量较少,所以纳米颗粒强化相变材料具有较高的热释放率,在相变储能应用中具有巨大优势。  相似文献   

19.
中温固体氧化物燃料电池(IT-SOFC)有助于国家的碳中和战略,但其阴极材料难以兼顾热兼容性和催化活性。为此,基于多元素耦合的高熵策略,本研究合成了高熵阴极材料GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-GBO),具有双过氧化物结构,与Gd0.1Ce0.9O2-δ(GDC)有良好的化学兼容性,协调了与催化活性之间的平衡性。采用HE-GBO阴极的对称电池在800℃下的极化电阻(Rp)为1.68?·cm2,而HE-GBO-GDC(质量比7:3)复合阴极的Rp因引入GDC而显著降低(800℃下Rp为0.23?·cm2)。采用HE-GBO和HE-GBO-GDC阴极组装树枝状微通道阳极支撑单电池,在800℃的最大功率密度分别达到972....  相似文献   

20.
在过去的几年里,电催化氮还原反应(eNRR)吸引了大量的研究兴趣.尽管如此, NH3的产量和选择性仍然没有达到实际应用的标准.本论文报道了成分为Bax(FeCoNiZrY)0.2O3-δ(Bx(FCNZY)0.2 (x=0.9, 1))的高熵钙钛矿作为eNRR催化剂的新材料研究平台.通过改变A位金属元素的非化学计量比,使材料产生更高密度的氧缺陷,进而提升氮气还原性能. B0.9(FCNZY)0.2的NH3产率和法拉第效率是B(FCNZY)0.2的1.51和1.95倍.理论上,利用d-带中心理论预测了B-位点的催化活性中心,并确定了镍元素为催化位点.最佳远端反应途径中的中间状态的自由能值表明,第三个质子化步骤(*NNH2→*NNH3)是决定速率的步骤,高熵钙钛矿氧化物中氧空位的增加对氮的吸附和还原都有贡献.这项工作为具有多个活性位点的高熵结构应用于电催化固氮提供了一个新的研究框架.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号