首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用三维正交织物作为基布,以聚氨酯为黏合剂将炭黑复合在基布上制备柔性可折叠吸波纺织复合材料。通过扫描电子显微镜、傅立叶红外光谱、硬挺度仪、矢量网络分析仪与拱形框连接对复合材料的微观形貌、结构、柔性和吸波性能进行分析。结果表明:当浸渍溶液中炭黑质量分数为15%,复合材料的弯曲高度为10 cm,显示出良好的柔韧性;测试角度为0°时,材料的有效吸波频宽(EAB)可覆盖整个X波段;测试角度为30°时,在10.64 GHz得到了最小反射损耗(RLmin)-41.33 dB,显示添加适量的炭黑,可以有效提高复合材料的吸波性能。  相似文献   

2.
叶伟  孙雷  余进  孙启龙 《纺织学报》2019,40(1):97-102
为开发兼具电损耗和磁损耗的新型轻质柔软吸波复合材料,采用聚丙烯腈(PAN)基预氧丝毡浸渍金属盐溶液,经高温处理工艺制备了磁性颗粒/碳纤维轻质柔软复合材料。通过弓形法吸波测试、X射线衍射、X射线能谱分析、扫描电子显微镜观察等方法对材料性能进行表征和分析。结果表明:所制备的复合材料由碳纤维和具有磁损耗性能的Fe—Co—Ni、Fe3O4、Fe—Ni、Fe—Co等颗粒组成,磁性颗粒沿着纤维轴向均匀分布,电损耗与磁损耗间的协同作用使磁性颗粒/碳纤维复合材料表现出优异的吸波性能。当处理温度为650 ℃和700 ℃时,试样电磁波发射损耗小于-5 dB的吸收波段分别为8.6~18 GHz和10~18 GHz,电磁波反射损耗小于-10 dB的吸收波段分别为13.9~18 GHz和14~18 GHz。结果表明,过高或过低的处理温度会降低材料电磁波损耗,通过调节处理温度可控制材料的吸波性能。  相似文献   

3.
程芳静  孙耀  王宜  宋虹  耿浩  胡健 《中国造纸》2016,35(5):39-45
通过造纸法制备了一种可用于制备吸波蜂窝的纸基吸波材料,分别选用短切碳纤维(CF)、短切碳化硅纤维(SCF)和碳纳米管(CNT)作为吸波剂,对位芳纶浆粕(PPTA)作为基体,对比了不同吸波剂及其用量对纸基吸波材料电磁参数及吸波性能的影响。结果显示,吸波剂用量(对绝干基的质量分数)在0.1%~50%的范围内,SCF-PPTA纸基吸波材料的复介电常数实部小于CF-PPTA和CNT-PPTA纸基吸波材料的。当吸波剂用量大于3%时,CNT-PPTA纸基吸波材料的介电损耗大于另外2种材料的。当吸波剂用量分别为1%、20%和3%时,对应CF-PPTA、SCF-PPTA和CNT-PPTA纸基吸波材料的反射率最低分别可达-15.08、-28.49和-13.69d B,此时纸基吸波材料对应的厚度分别为2.45、4.35和2.98 mm。  相似文献   

4.
从家畜动物皮中提取胶原纤维,对其进行化学改性制备一种新型的微波吸收剂,将其与植物纤维(漂白硫酸盐竹浆)混合抄片,制成具有微波屏蔽功能的纸张,研究了胶原纤维吸渡剂的添加量对成纸的微波屏蔽性能和机械强度的影响.结果表明,胶原纤维经化学改性后,其电磁参数发生明显改变;在植物纤维中添加胶原纤维吸波剂,能明显提高成纸的微波屏蔽能力;随着胶原纤维吸波剂用量的增加,纸张的屏蔽作用不断提高,对定昔为90 g/m2的纸样,当吸波剂用量为60%(质量分数)时,最大屏蔽能力超过35 dB;当添加量不超过55%时,胶原纤维吸波剂不仅能够赋予成纸微波屏蔽能力,还能够增加成纸的机械强度.  相似文献   

5.
为在不改变碳纤维/聚丙烯(PP)复合材料力学性能前提下,降低复合材料中PP含量以减轻环境降解压力,通过在碳纤维/PP复合材料树脂体系中掺杂可降解的聚乳酸(PLA)形成共混树脂体系,并经热压成型制备碳纤维增强共混树脂复合材料。探究了PLA、PP共混体系质量比对复合材料冲击、弯曲和拉伸性能的影响。结果表明:随着树脂体系中PLA质量分数的增加,复合材料的冲击强度和弯曲强度都呈先降低后升高、再降低的趋势,拉伸强度呈现先升高后降低的趋势;当PLA质量分数为60%时,复合材料的冲击强度和弯曲强度最高,分别为21.8 kJ/m2和112.5 MPa,拉伸强度为37.2 MPa,复合材料的综合物理力学性能最优,与未添加PLA的复合材料的力学性能相近。  相似文献   

6.
为了解制备工艺对涂覆型吸波材料性能的影响,实验研究涂层层数对镍粉/石墨基复合材料的介电性能及吸波性能的影响机制。选用PU2540型聚氨酯为黏结剂,镍粉、石墨为功能粒子,涤/棉平纹织物为基布,采用纺织涂层(刮涂法)工艺制备了涂层层数不同的镍粉/石墨基涂层复合材料。测试该复合材料的介电常数(实部、虚部、损耗角正切值)和反射损耗,分析涂层层数对复合材料介电性能和吸波性能的影响。结果表明:在测试频率1~1000 MHz范围内,3层的镍粉/石墨基复合材料对电磁波的极化能力、损耗能力及耦合能力最强;在测试频率10~3000 MHz范围内,涂层层数2层的复合材料的吸波性能最好,反射损耗最小峰值为-26.460 dB;3种涂层层数不同的复合材料在不同频段表现出不同的吸波特性。所得结果可为开发经济实用的吸波材料提供理论参考。  相似文献   

7.
以不饱和树脂为基体,三维玻璃纤维织物为增强体,采用手糊/模压工艺,制得三维玻璃纤维增强复合材料,并对其力学性能进行了研究。结果表明,当增强材料的质量分数为10%时,复合材料的拉伸强度和弯曲强度分别为89.38MPa和147.45MPa。与二维玻璃纤维织物增强复合材料相比,其拉伸强度和弯曲强度分别提高了37.46%和21.91%,与短纤维增强复合材料相比,其拉伸强度和弯曲强度分别提高了64.30%和35.83%。另外,为进一步改善基体的力学性能,还考察了刚性粒子(碳酸钙)对复合材料的影响。结果表明,碳酸钙能提高复合材料的韧性,且当碳酸钙质量分数达到20%时韧性最佳。  相似文献   

8.
文章选用低密度聚乙烯作为基体材料,分别与碳纳米管(CNT)吸收剂、纳米Fe_3O_4吸收剂融合,制备吸波复合板材。采用网络分析仪-波导管系统分析了吸波剂浓度、板材厚度对吸波性能的影响。研究发现,CNT复合板材的厚度为3.6mm时,最佳吸收剂浓度为1.5%,回损在9.96GHz处达到最大值-40.92dB;纳米Fe_3O_4吸波材料厚度为3.6mm时,回损随吸收剂浓度增加而增大,在浓度2.0%时,回损在9.44GHz处可达-23.95dB。复合板材的吸波性能随板材厚度的增加而增强。板材厚度相同时,同浓度的CNT的吸波性能优于纳米Fe_3O_4。  相似文献   

9.
混杂纤维增强结构-隐身一体化复合材料兼具良好的吸波性能和力学性能,因而被应用于隐身的多个领域。本文深入分析了电磁波与隐身材料的相互作用机理,明确了混杂纤维增强结构-隐身一体化复合材料的设计原理,研究了碳纤维取向、纤维混杂比、混杂结构对混杂纤维增强结构-隐身一体化复合材料吸波性能和力学性能的影响,并指出了目前存在的不足,以期为今后该类复合材料的结构设计提供借鉴。  相似文献   

10.
制备了 11种含不锈钢纤维及碳纤维的织物,分别用屏蔽室法和拱形法测量织物在4~14 GHz频段范围内的电磁屏蔽效能和反射率,探究不锈钢纤维质量分数、碳纤维质量分数、不锈钢纤维类型、织物经纬纱密度及织物凹凸结构等因素对织物电磁屏蔽效能和吸波性能的影响.研究表明,在碳纤维质量分数为10%范围内,碳纤维质量分数的增加对织物吸...  相似文献   

11.
采用低表面能物质聚二甲基硅氧烷(PDMS)为黏结剂,利用纳米硫化铜/还原氧化石墨烯@纤维素纳米纤维(CuS/RGO@CNF)三元复合材料在棉织物上构筑表面粗糙结构,制备了柔性超疏水吸波纺织品。对整理织物的微观形貌和结构进行了表征,研究了整理织物的吸波性能和超疏水性能。结果表明,与纳米CuS、CuS/RGO复合材料相比,CuS/RGO@CNF复合材料具备微观多孔结构,呈现优异的微波吸收性能,最小反射损耗为-49.71 dB,整理的织物在频率为11.46 GHz时最小反射损耗可达到-32.4 dB,水滴接触角达到155.3°,具有优异的吸波、超疏水、防污及自清洁性能。  相似文献   

12.
为解决当前多孔磁性碳基吸波材料制备工艺繁杂、能耗高、环境不友好等问题,提出基于多孔生物质源衍生的绿色环保策略。以高孔隙丝瓜络为前驱体,Co2+为金属源,二甲基咪唑为配体,经配位自组装获得丝瓜络/金属有机骨架结构复合材料,并经高温煅烧得到碳纤维基钴/碳(LS-Co/C)复合材料。结果表明:在800℃煅烧后,LS-Co/C展现了优异的吸波性能,厚度为1.5 mm时有效吸收带宽为5.2 GHz (12.8~18.0 GHz),其良好的吸波特性得益于错综复杂的三维多孔网络结构为电磁波提供了适宜的损耗空间,在电磁场作用下产生感应电流,并在碳纤维导电网络中快速衰减,同时钴/碳复合材料与碳纤维形成的多重界面极化助力电磁波进一步衰减。该研究将为新型多孔磁性碳基吸波材料的设计开发提供策略。  相似文献   

13.
石墨烯具有独特的二维材料性质,单以石墨烯作为功能粒子制备的吸波材料,吸波性能未达到预期值。为了开发"薄、轻、宽、强"的吸波材料,将不同磁性材料与石墨烯复合,可以改善单一石墨烯吸波材料的缺陷。分析了目前不同石墨烯/磁性颗粒复合吸波材料的吸波性能,主要介绍了石墨烯/磁性颗粒复合吸波材料的国内外最新研究进展,探讨了石墨烯/磁性颗粒复合材料的研究趋势。  相似文献   

14.
为了提高纺织复合材料的抗冲击性能和发泡材料的力学性能,制备了3D玻纤织物增强发泡聚氨酯复合材料。利用场发射扫描电镜、摆锤冲击仪和万能材料试验机,分析研究了外加不同发泡剂质量分数对发泡复合材料泡孔的微观形貌和力学性能的影响。结果表明,当发泡剂质量分数为5%时,3D玻纤织物增强发泡聚氨酯复合材料的冲击强度最大可达73.34 kJ/m~2,同时压缩强度和拉伸强度分别为5.24、28.1 MPa;随着发泡剂质量分数增加,聚氨酯泡孔增大并且出现不均匀现象,复合材料密度也随之下降,压缩强度和拉伸强度均下降;复合材料中发泡剂质量分数为5%,能够在满足轻量化的情况下实现较高的抗冲击性。  相似文献   

15.
为了探讨黄麻纤维非织造布/不饱和聚酯树脂复合材料的力学性能,将黄麻纤维通过针刺工艺制备成非织造布,并对其进行碱处理,制备了不同黄麻纤维质量分数的复合材料,测试了复合材料的拉伸弯曲性能,并采用扫描电镜测试了复合材料的断面形态,分析了黄麻纤维针刺非织造布质量分数与碱处理对复合材料拉伸强度与弯曲强度的影响。结果表明:黄麻纤维针刺非织造布对不饱和聚酯树脂的力学性能具有明显的增强效果,且随着黄麻纤维质量分数的增加,复合材料的力学性能先增加后减小,当黄麻纤维/树脂质量比为20/80时,复合材料的拉伸强度和弯曲强度均达到最大,其中碱处理黄麻纤维针刺非织造布增强复合材料的拉伸强度为41.78 MPa,弯曲强度为59.03 MPa;碱处理后黄麻纤维的表面性能得到改善,使得黄麻纤维与聚酯树脂的界面结合情况得到改善,从而提升复合材料的力学性能。  相似文献   

16.
为开发高黑度的原液着色聚酰胺6(PA6)纤维,将经原位聚合法制备的炭黑质量分数为1.0%~3.0%的系列PA6/炭黑(PA6/CB)复合材料进行熔融纺丝制备PA6/CB复合纤维,并对复合材料的形貌结构、热性能、晶型结构以及纤维的力学性能、取向度、色度值和色牢度进行表征。结果表明:经原位聚合法引入的炭黑在原液着色PA6/CB复合材料和纤维中分散均匀;炭黑在基材中起异相成核作用,添加炭黑的PA6/CB复合材料的结晶度和结晶温度均得到提高;炭黑可提升复合材料的热稳定性,并可促进PA6形成热力学性能更稳定的α晶型;随着炭黑质量分数的提高,PA6/CB复合纤维的断裂强度先提高后逐渐下降,当炭黑质量分数为1.0%时达到最大,为4.07 cN/dtex; PA6/CB复合纤维的取向度均高于纯PA6纤维;炭黑质量分数越高,PA6/CB复合纤维的颜色越黑,但其质量分数超过2%后纤维的黑度提升不明显。  相似文献   

17.
丁娟  刘阳  张晓飞  郝克倩  宗蒙  孔雀 《纺织学报》2023,44(2):191-198
为提高涂层棉织物的吸波性能,采用溶液混合法制备磁性金属有机框架(Fe-MOF),通过高温热解制备Fe/C多孔碳材料,以聚丙烯酸酯为黏合剂,将Fe/C多孔碳材料复合在棉织物上制备柔性纺织复合材料。借助X射线衍射仪、场发射扫描电子显微镜、振动样品磁力计与热重分析仪分别对Fe/C多孔碳材料的结构、微观形貌、磁性能进行表征与测试,使用矢量网络分析仪对Fe/C多孔碳材料和涂层棉织物的吸波性能进行分析。结果表明:在频率为4.6 GHz时,Fe/C多孔碳材料的反射损耗值最小为-60.4 dB,小于-10 dB的有效带宽为1.4 GHz,最佳厚度为4.3 mm;涂层棉织物的反射损耗值最小为-53.94 dB,小于-10 dB的有效频宽为X波段(频率为8.2~12.4 GHz),最佳涂层厚度为4.5 mm; Fe/C多孔碳材料涂层棉织物厚度达到3.5 mm以上时,其吸波性能优良。  相似文献   

18.
于永涛  刘元军  赵晓明 《丝绸》2020,57(4):11-16
针对电子设备在运行时产生的电磁污染和电磁干扰等现状,吸波材料能将电磁能转化为热能、机械能等其他形式的能量而受到关注。文章首先介绍了石墨烯的结构及其吸波机理;其次探讨了石墨烯/碳纳米管、石墨烯/碳纤维、石墨烯/聚苯胺吸波复合材料的吸波性能;最后总结了三类吸波复合材料的联系与区别,并展望了石墨烯吸波复合材料在未来的发展和挑战。  相似文献   

19.
碳纳米管/桑皮纤维复合材料吸波性能研究   总被引:1,自引:0,他引:1  
用环氧树脂将碳纳米管和桑皮纤维结合一起制成复合材料,研究了碳纳米管材料和桑皮纤维材料的吸波性能,并分析了碳纳米管和桑皮纤维的含量比对复合材料吸波性能的影响,分析了试样厚度对复合材料吸波性能的影响。  相似文献   

20.
电磁吸波材料对于防护电磁辐射危害是极为有效的一种手段,吸波材料所具有的吸波性能对军用和民用都有重大意义。Metal-organic frameworks(MOFs)衍生碳基复合材料是一种新型吸波材料,具有合成工艺简单、热稳定性好、比表面积大、孔隙率高等优点。本文简要介绍电磁吸波机理,综述碳基复合吸波材料研究现状,分析MOFs衍生碳基复合材料在电磁吸波领域研究进展,展望MOFs衍生碳基复合吸波材料未来发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号