首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
为了解同心双管注多元热流体的传热特征,获得最优的井底蒸汽参数,基于实际气体R-K-S状态方程和质量、能量与动量守恒方程,结合经典地层内瞬态传热模型,建立了同心双管注多元热流体井筒传热数学模型。在验证模型的基础上,分析了井筒内混合汽/气典型传热特征,近井口处无接箍油管和内油管环空之间的温差较小,会导致流体热物性参数剧烈变化,但温度梯度快速趋于一致。应用该模型对非凝结气含量和注汽温度进行了优化计算,结果表明,非凝结气含量增大,井底过热度减小;随着无接箍油管注汽温度升高,井底过热度增加。研究结果表明,注汽参数对井筒内热参数分布有明显影响,现场作业时要根据井眼实际情况优选注汽参数。   相似文献   

2.
以裸眼完井水平井注过热型多元热流体为研究对象,通过引入过热型多元热流体各组分热物性参数实验数据,利用质量、动量和能量守恒方程,建立了裸眼完井水平井注过热型多元热流体传质传热模型。在模型验证的基础上,研究了非凝结气质量分数、注汽速度和注汽温度对热物性参数分布的影响。研究表明:随着非凝结气质量分数增加,井筒内同一位置流体温度和过热度均减小;随着注汽速度增加,井筒内同一位置过热度不断升高;跟端注汽温度升高,沿程吸汽量减少,过热度增加。模型对于矿场分析裸眼水平井传质传热规律、优选注汽参数具有重要指导意义。  相似文献   

3.
为了优化海上稠油油藏"非凝结气与过热蒸汽"(简称为"混合汽/气")混注过程中的注汽参数,根据质量、能量和动量守恒方程,建立了井筒内非等温流动数学模型,结合海水中传热模型、地层内瞬态导热模型,建立了完整的海上稠油油藏注混合汽/气井筒传热模型,利用有限差分法和迭代法计算得到井筒内的压力和温度分布。研究结果表明:海水流动能明显增加井筒热损失,降低混合汽/气的温度;随着非凝结气含量增加,混合汽/气的温度和过热度均下降;随着注汽压力增加,过热度不断下降。海上稠油油藏注混合汽/气井筒传热模型为优选注汽参数和分析海水对井筒热损失的影响提供了理论依据。   相似文献   

4.
CO2井筒相变流动温度压力计算模型研究   总被引:2,自引:0,他引:2  
CO2在井筒流动过程中的气液相变对井筒温度、压力分布的计算有较大影响。CO2流体在气液相变段的流动属于两相流动,目前常用的计算方法均未考虑该气液混合段的两相流计算。文章从传热学及两相流理论出发,建立了井筒流体相变过程中温度、压力分布的耦合计算新模型;考虑沸腾传热和凝结传热的影响,对流体相变过程中井筒总传热系数进行了修正。该模型主要创新在于可以对CO2流体相变过程中气液混合段的温度、压力进行求解,并能对该混合段气液组分含量变化的动态过程进行计算。运用此模型对吉林油田H75-29-7井压力、温度、质量含气率进行了计算,计算结果与实测结果对比显示本模型计算精度较高。  相似文献   

5.
针对传统格子玻尔兹曼模型无法处理真实多组分混合物气液两相流的问题,提出了一种新的基于四参数(临界温度、临界压力、偏心因子、体积修正因子)状态方程的多组分格子玻尔兹曼模型。模型首先使用烃类混合物状态方程计算混合流体间作用力,并提出一种将混合流体作用力分配给各流体组分的方法,从而计算出混合流体中各组分所受作用力,再使用精确差分方法将组分作用力引入格子玻尔兹曼模型。同时为正确反应黏度变化对多相体系流动过程的影响,引入LBC(Lorentz-Bray-Clark)黏度模型计算混合流体的黏度。利用该模型,分别模拟了甲烷、乙烷、丙烷等多组分气液两相共存问题。新模型计算结果与使用逸度平衡方法获得的理论解吻合度较高,验证了新模型的正确性。图7表1参24  相似文献   

6.
稠油的开采方式主要是降低原油黏度,增加其流动性。由于原油的黏度对于温度极其敏感,热采开采方式备受关注。以渤海油田A区的实验井为例,介绍了射流泵井以多元热流体为动力液在同心管井筒的传热特点,研究了热流体在井筒各部分的传热过程,建立了综合传热系数的计算方法以及井筒温度场模型,根据相应的温度场求解流程,编制软件,并以实际射流泵生产井为例进行计算。实际测量结果与软件计算结果存在8.87%的误差,可以为后续海上稠油油田射流泵井工况诊断和参数优化提供保障。  相似文献   

7.
修改的BWRS状态方程   总被引:1,自引:0,他引:1  
苑伟民 《石油工程建设》2012,38(6):9-12,106
准确计算流体的属性和热力学模型需要合适的状态方程。BWRS方程包含了计算轻烃组分的系数,决定烃类混合物气体系数的混合规则,可用于热力学性质计算和气液平衡计算,还可用于高密度状态或者有凝液出现的情况。通过对BWRS方程中各个参数的分析研究,提出了改进的MBWRS状态方程。修改模型包括:其一修改了BWRS方程中的11个参数,将BWRS状态方程转化为无因次的状态方程,减小了由于单位制转换带来的累积误差;其二添加了包括C7+在内的烃类和非烃类组分(共25个)的二元交互作用系数。由于BWRS状态方程是关于密度的隐式方程,介绍了求解该超越方程的精确且快捷的计算方法。BWRS状态方程的修改,为精确地求得热力学参数提供了有力的保障。  相似文献   

8.
运用热力学、传热学以及两相流理论,对油井稳定连续生产时的传热过程进行了理论分析,建立了数学模型,并运用数学方法对该模型进行了求解,该模型综合考虑了井筒的径向传热,不同环空传热介质及地层的热物理性质沿井深的变化,环空中流体的对流换热,辐射以及传热,焦耳-汤姆逊系数以及液相的体积膨胀系数。采用该井筒温度分布计算模型为依据,借鉴均质模型的井筒压力求解方法计算井底流压。  相似文献   

9.
以开式热流体反循环温度场分布模型和Beggs-Brill井筒多相管流计算方法为基础,在已知地层参数和井筒参数的条件下,考虑井筒内的传热方式为垂直井筒中的稳态热传导和对流换热,地层中的传热方式为非稳态热传导,井筒中的流动方式为气液两相混合流动,根据能量守恒定律及传热学原理,推导出了气举井生产流体和注入气体沿井筒的温度场分布计算模型。根据模型编写了计算机程序,实现了注气压力、注气量等重要参数的计算,并能够对产油量、注气压力、注气量等参数进行敏感性分析。  相似文献   

10.
准确预测钻井过程中的井筒温度是科学评价井筒中流体流动安全与压力控制的关键。为此,基于井筒–地层各区域能量守恒原理,建立了井筒–地层传热数值模型和井筒–地层传热解析模型,分别用全隐式有限差分法和解析法对数学模型进行了求解;并结合顺北油田某超深井井身结构与钻井参数,从传热机理上分析了2种模型的井筒温度计算精度及其影响因素。分析认为:钻进时,下部井段环空流体温度低于原始地温,而上部井段流体高于原始地温;解析模型应用简化的无因次时间函数表示从远处地层传至近井壁的拟稳态热交换方式,并用综合传热系数表征地层–环空、环空–钻柱内总的热交换量,减少了井筒与地层间的热交换量,导致其计算出的环空和钻柱内流体温度低于数值模型。研究结果表明,数值模型计算结果与实测值吻合程度高,数值模型和解析模型的计算误差分别为1.46%和6.94%,两者计算结果差值为13.15 ℃。研究结果为深入认识钻进中井筒-地层传热机理和准确评价温度场提供了理论依据。   相似文献   

11.
应用稠油开采中湿燃气的状态方程计算热力参数   总被引:3,自引:3,他引:0  
在稠油开采过程中,为了给燃气蒸汽混注吞吐和烟道气注入工艺设计提供比较准确的热力参数,将直燃式燃气蒸汽发生器中高压混合气体当作实际气体处理,应用Martin—Hou方程及偏差函数修正法进行了公式推导,计算了混合气体的焓、定压比热等热力参数,并与按理想气体计算的混合气体的热力参数进行了比较。结果表明,在温度较低时,利用状态方程计算的热力参数明显偏离按理想气体计算的热力参数;燃气对蒸汽的混注比越小,气体的热力参数偏离越明显。状态方程计算结果比现场实际测试结果偏大4.5%。原因可能是实际测试时没有考虑到混合室和燃烧室对环境的散热,可见所采用的实际气体计算模型是合理的,计算结果基本满足工程精度要求。  相似文献   

12.
水平井筒分层流型压降计算模型研究   总被引:1,自引:0,他引:1  
井筒流动是一种沿井筒不断有流体流入的变质量流体流动 ,因此其压降计算有别于常规管流。在混合损失计算模型的基础上 ,应用动量守恒原理推导出了新的水平井筒气液两相分层流型压降计算模型。该模型较全面地考虑了井筒流动各方面的参数 ,将井筒压力损失划分为摩擦损失、加速损失、重力损失和混合损失等 4部分 ,其中加速损失主要源于径向流入引起的加速损失 ,以及由于持液率的变化引起气、液流速变化而导致的加速损失。计算实例表明 ,水平井筒气液两相流动中的井筒压降均随着管壁入流量和轴向流量的增加而增大 ;入流角对井筒压降的影响主要表现为混合损失占井筒损失的比例随入流角的增加而增加 ;新的水平井筒压降模型与油藏渗流相耦合 ,可为水平井产能研究提供理论指导。  相似文献   

13.
气液两相流循环温度和压力预测耦合模型   总被引:1,自引:0,他引:1  
为保证欠平衡钻井安全钻进,需要给欠平衡钻井设计提供井筒温度和压力分布等基础数据。基于气液两相流钻井液循环时的流动特征和井筒与地层的传热机理,建立了适用于欠平衡钻井预测气液两相流钻井液循环温度和压力的耦合模型,给出了模型的离散方法和求解方法。在模型的求解过程中,考虑了温度和压力对气相(空气、氮气)的密度、比热、比焓、动力黏度、热导率等热物性参数的影响及热源对气液两相流钻井液温度场的影响,保证了气液两相流循环温度和压力的计算精度。基于大庆油田升深2-17井充氮气欠平衡钻井试验数据,利用气液两相流钻井液循环温度和压力预测耦合模型对欠平衡钻井时的井底温度和压力进行了计算,计算结果与实测结果吻合程度高,验证了模型的有效性。对比分析了以地温、地面温度作为气液两相钻井液温度和考虑井筒换热3种情况下的环空压力剖面特征,为欠平衡钻井设计及控压钻井设计和施工提供了理论基础和技术支持。  相似文献   

14.
蒸汽辅助重力驱生产井井筒举升工况分析   总被引:8,自引:0,他引:8  
蒸汽辅助重力驱(Steam Assisted Gravity Drainage)SAGD技术是水平井结合注蒸汽工艺技术在开采稠油中的具体运用,在我国辽河油田开始了现场试验。为了分析生产井能否维持自喷并进行正常的SAGD开采,本文打破了常规的计算方法,首次将井眼轨迹计算技术引人多相流动的计算中,应用多相流体力学和传热学原理,建立了井筒内的能量平衡方程及热传导方程。通过对汽液两相流体在倾斜井筒中总传热系数方程式、热传导方程式及能量平衡方程式的求解,得出了计算井筒内任意点处压力、干度及其他物性参数的计算公式,总结出一套新的计算方法,并编制了计算软件。理论计算与现场实测数据的对比表明,该理论是正确的,利用该软件所得计算结果可以作为油田SAGD生产举升方案设计的依据。  相似文献   

15.
In this article, a coupled system model of differential equations was derived in radial form to predict the pressure, temperature of formation, and temperature of wellbore in high-temperature–high-pressure gas wells. In the model, the thermal effect of formation was simplified as heat conduction, both the steady heat transmission model in the gas wellbore and the unsteady heat conduction model in the formation were considered, and the pressure effect due to variations in temperature was considered according to the gas equation of state, which links the temperature with the pressure. The finite difference method was used to simulate the solutions of the coupled models. The basic data for X Well (high-temperature–high-pressure gas well, 7,100 m deep) in China were used for case history calculations and a sensitivity analysis was performed for the models. Graphs of the curves for gas pressure and temperature along the depth of the well were plotted with different gradients, injection volumes, and the characteristic of heat transfer in the formation. The results provide technical reliability in well test design in high-temperature–high-pressure gas wells and the dynamic analysis of production.  相似文献   

16.
考虑欠平衡钻井中钻屑的影响以及由于地层和钻井液之间热量传递导致的温度变化,应用气-液-固三相流模型来模拟井筒流体,计算井筒温度和压力分布,分析不同参数对环空内流体压力和温度分布的影响.研究表明,与两相流模型及其他考虑地温梯度的三相流模型相比,考虑传热的非等温三相流模型能够更加准确地预测欠平衡钻井井底压力.井筒内黏性耗散...  相似文献   

17.
高温高压气井在生产过程中受到地层高温流体的影响,井筒温度原有的平衡被打破,井筒温度重新分布会引起环空压力增高,威胁井筒安全服役和井筒的完整性。为了准确预测井筒温度,基于质量、动量、能量守恒、传热学、井筒传热理论,再考虑气体焦耳-汤姆逊效应、气体温度、压力、密度及物性参数的影响,建立井筒温度预测模型;将流体物性参数根据不同的温度压力分段计算,可提高模型计算的精确性。最后,通过实例计算分析了环境温度的影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号