首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究了激光焊接速度对800 MPa级Nb-Ti-Mo微合金钢焊接接头的组织和性能的影响。通过体式显微镜、扫描电镜和透射电镜观察其形貌组织,硬度、拉伸试验测试其力学性能。结果表明,焊接接头宽度随着焊接速度(0.78~1.8 m/min)增大而逐渐减小,低焊速(0.78 m/min)下接头下塌严重。焊缝区组织主要为板条马氏体,并且在低焊速(0.78~1.2 m/min)情况下会形成少量贝氏体和铁素体。粗晶区组织为板条马氏体,并随着焊接速度增大,原始奥氏体晶粒尺寸逐渐减小。细晶区和混晶区组织均为铁素体和M-A组元,但是细晶区的组织更为细小,而混晶区的组织均匀性不佳。焊接接头峰值硬度出现在粗晶区,且随着焊接速度增大而减小。高焊速(1.5~1.8 m/min)下的接头拉伸断裂位置均出现在母材区,抗拉强度达835 MPa。  相似文献   

2.
《铸造技术》2015,(2):499-501
用自动TIG焊在不同的焊接工艺条件下对S275NL低合金高强钢进行焊接。利用光学显微镜分析了焊接接头热影响区(粗晶区)金属的显微组织;测试了焊接接头热影响区的显微硬度。结果表明,如焊前不预热,焊后不保温缓冷,焊接接头热影响区(粗晶区)的组织比较粗大,硬度较高,不利于提高热影响区的冲击韧度;焊前进行150℃左右预热,焊后保温缓冷,且采用合适的焊接热输入(2.31 k J/cm),焊接接头热影响区(粗晶区)组织细小,分布均匀,且为等轴晶,硬度分布合理,有利于提高热影响区的冲击韧度;在不同焊接条件下,S275NL钢焊接热影响区均存在硬化现象。  相似文献   

3.
热轧高强双相钢焊接性研究   总被引:2,自引:0,他引:2  
对DP600热轧双相高强钢板的焊接性进行了系统研究.对于不同焊接热输入下热轧双相高强钢板焊接接头强度性能、显微硬度分布、冲击韧度及显微组织分析表明,气体保护焊粗晶区硬度高韧度低,细晶区组织细小,激光焊粗晶区域较窄,其焊接热影响区冲击韧度较高;DP600热轧双相高强钢板焊接热影响区以铁素体与贝氏体为主,同时在铁素体基体上弥散分布细小碳化物.  相似文献   

4.
开展了一种Fe-Cr-Ni-Mo系高强钢熔化极活性气体保护焊(MAG)焊接试验,同时测试了该高强钢的热物理性能参数和线膨胀系数,基于SYSWELD软件建立了该高强钢MAG焊接有限元模型,模拟了其MAG焊接热过程。通过对比模拟与试验获得的焊缝截面形貌、尺寸和焊接热循环曲线,建立了合适的双椭球MAG焊接热源模型。结合焊接接头硬度分布规律,确定了Fe-Cr-Ni-Mo系高强钢MAG焊接热影响区(HAZ)3个微区(粗晶区、细晶区和不完全淬火区)的范围,抽取了各微区的特征焊接热循环曲线。采用Gleeble3800热模拟机制备了各微区试样,显微组织和硬度对比结果表明,热模拟和实际焊接获得的HAZ各微区的显微组织和硬度吻合较好,抽取的各微区特征焊接热循环曲线较可靠。  相似文献   

5.
研究了振动加速度对不同焊接线能量下Q460D钢埋弧焊焊接接头组织、显微硬度和冲击性能的影响,分析了振动加速度的作用机理。结果表明,机械振动可以改善Q460D钢埋弧焊焊接接头焊缝区显微组织,使得铁素体更加细密,组织均匀性提高;不同焊接热输入下Q460D钢埋弧焊焊接接头的显微硬度峰值出现在热影响区粗晶区内,而焊缝区的硬度偏低,且振动加速度在8 m/s~2时,焊缝区和粗晶区的显微硬度相对较高;较小的焊接线能量(30.4 kJ/cm)与较高的振动加速度(12 m/s~2)以及较大的焊接线能量(35.5 kJ/cm)与较小的振动加速度(4 m/s~2)可以使得Q460D钢焊接接头具有较高的冲击功。  相似文献   

6.
分别采用300、900r/min对低Cu高强Al-Zn-Mg-Cu合金板材进行搅拌摩擦焊接,研究合金焊接接头的显微组织和力学性能。结果表明,焊接过程中微米级AlMnCr相变化不明显,晶内纳米级和晶界亚微米级MgZn_2相发生回溶与粗化。随着焊接转速增加,析出相回溶程度加剧,焊接接头晶粒尺寸增大。在晶粒和析出相共同作用下,合金焊接接头硬度呈"U"型分布,前进侧热影响区硬度略低于后退侧,焊核及热机影响区硬度较低,是焊接接头断裂位置,受"S"线缺陷影响形成锯齿形断口形貌。综合分析,低Cu高强Al-Zn-Mg-Cu合金在300r/min下接头性能较好,抗拉强度、屈服强度、伸长率和焊接系数分别为393MPa、261MPa、12%和80%。  相似文献   

7.
研究了三种不同的激光焊接速度对Q420钢焊接接头成形、显微组织、硬度和常温拉伸性能的影响。结果表明,不同焊接速度下钢板都已经焊透,焊接接头中未发现焊接气孔、夹杂等缺陷,焊接接头的界面结合性较好;随着焊接速度的增加,焊接接头上表面和下表面宽度都逐渐减小,且在焊接速度为2.0 cm/s时形成了深度约为0.8 mm的下塌;不同焊接速度下,激光焊接头粗晶区显微组织都为板条马氏体,且随着焊接速度的增大平均晶粒尺寸逐渐减小;细晶区组织都为铁素体和M-A组元,铁素体晶粒尺寸主要为3~5μm;焊缝区组织都主要为板条马氏体,在焊接速度为2.0 cm/s时,组织中还出现了少量粒状贝氏体和铁素体;三种焊接速度下焊接接头显微硬度都高于母材,峰值硬度都出现在粗晶区附近;三种焊接接头拉伸断口都出现在母材处,抗拉强度和屈服强度高于Q420母材,而断后伸长率与母材相当或者略低于母材。  相似文献   

8.
装甲钢MAG工艺常采用奥氏体、铁素体不锈钢焊丝,使得焊接接头抗拉强度和硬度会大幅度降低,同时造成热影响区的局部软化,降低了装甲车辆的防护性能。为了满足超高强装甲钢焊接接头强度和硬度防护要求,该文对超高强装甲钢激光焊接工艺进行了研究,分别为MAG、激光自熔焊、激光填丝焊、激光-电弧复合焊4种焊接方法,研究接头拉伸、弯曲、硬度等性能指标及接头组织。结果表明,激光焊接头的焊缝组织为粗大的板条马氏体,MAG焊缝组织为铁素体和粒状贝氏体;对于激光焊和MAG,淬火粗晶区均为粗针状马氏体,淬火细晶区为细小的针状马氏体,不完全淬火区为马氏体与铁素体的混合组织。激光焊接头的抗拉强度和硬度远高于MAG,激光焊接头的抗拉强度可达到母材的90%以上,硬度约为母材的82%,大大提高了防护型车辆的防护性能。然而,激光焊接头的抗弯强度要低于MAG,无论面弯还是背弯,激光焊弯曲试样通常在弯曲角度10°~30°之间即发生断裂,大大低于MAG弯曲角度90°(不断裂),从而限制了其使用场景。  相似文献   

9.
针对JFE980S低合金调质高强钢,采用激光-MAG复合焊,并与常规MAG焊进行比较,分析了激光-MAG复合焊接头的力学性能。研究结果表明:激光复合方法很大程度上提高了接头的力学性能;采用激光复合焊时,通过增加焊接速度、减小坡口角度和增大坡口钝边厚度,能有效提高焊接效率。同时针对低合金高强钢接头容易出现的脆化和软化问题,通过金相和断口试验,分析了激光复合焊改善接头抗脆化和软化能力的原因:激光复合焊焊缝组织均匀细小,接头粗晶区宽度窄且为性能优异的板条马氏体组织,提高了接头的抗脆性断裂的能力;对不完全相变区进行了显微硬度测试,激光复合焊硬度值高,这在一定程度上降低了接头软化现象的发生。  相似文献   

10.
使用自动埋弧焊技术对特厚(厚度为80 mm)F690钢板进行双面多层焊接试验,测试了焊接接头室温拉伸性能和硬度,检验了-60 ℃下Charpy冲击性能,分析了焊接接头不同亚区的显微组织。结果表明,在输入量(E)为35 kJ/cm下,F690钢未出现焊接热影响区软化现象,焊接接头的强度和韧性匹配良好。热影响粗晶区(CGHAZ)组织主要为板条状贝氏体(LB),热影响细晶区(FGHAZ)组织主要为细小粒状贝氏体(GB)。  相似文献   

11.
12.
13.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

14.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

15.
16.
17.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

18.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

19.
This paper describes the general features of the functional methods of electrohydropulse, pulse electrocurrent, and magnetic pulse treatment processes of the melt in order to positively vary its crystallizaton ability.  相似文献   

20.
Conclusion In alloy Fe-42% W atomized with a cooling rate during solidification within the limits from 5·103 to 1·105°C/sec with the maximum cooling rate (not less than 105°C/sec) precipitation of -phase (Fe7W6) from the liquid melt is suppressed. In granules of alloy obtained with a high solidification rate it is possible to achieve total dissolution of tungsten in solid solution (42%). Subsequent heating causes precipitation of -phase in dispersed form.I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy (TsNIIChERMET) Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号