首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experimental investigations were performed to see how the die exit geometry and the extrusion velocity influence on extrudate swell and melt fracture for several polymer melts [low-density polyethylene, styrene-butadiene rubber (SBR) and SBR/HAF (carbon black) compound]. Four different types of die exit geometry were considered; 0° (symmetric. usual capillary die), and 30°, 45° and 60° (asymmetric dies) were chosen for the die exit angle. Extrudate diameters were measured without draw-down under isothermal condition. Polymer melts were extruded into an oil that has the same density and temperature as those of the extrudate. Extrudate swells from dies with different diameters were correlated with volumetric flow rates. It was observed that the extrudate swell increases with increasing volumetric flow rate and exhibits through a minimum value at about 45° die exit angle. As to the fracture phenomena, it was observed that the critical shear for the onset of melt fracture increases with the increasing die exit angle up to 45°. However, for 60° die exit angle, the onset of melt fracture is again similar to that of 0° exit angle.  相似文献   

2.
Extrudate swell behavior of polystyrene (PS) and linear low‐density polyethylene (LLDPE) melts was investigated using a constant shear rate capillary rheometer. Two capillary dies with different design configurations were used, one being a single flow channel and the other being a dual flow channel. A number of extrudate swell related parameters were examined, and used to explain the discrepancies in the extrudate swell results obtained from the single and dual flow channel dies, the parameters including output rate and output rate ratio, power law index, wall shear rate, wall shear stress, melt residence time, pressure drop induced temperature rise, flow channel position relative to the barrel centerline, and the flow patterns. It was found in this work that the power law index (n value) was the main parameter to determine the output rate ratio and the extrudate swell between the large and small holes for the dual flow channel die: the greater the n value the lower the output rate ratio and thus decreased extrudate swell ratio. The differences in the extrudate swell ratio and flow properties for PS and LLDPE melts resulted from the output rate ratio and the molecular chain structure, respectively. The extrudate swell was observed to increase with wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, and the change in the melt velocities flowing from the barrel and in the die to the die exit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1713–1722, 2003  相似文献   

3.
The effect of die wall temperature on the extrudate swell of polymer melts flowing through dies with single and dual circular channels was studied. Extrudate swell was measured at constant flow rates using an Instron capillary rheometer with a modified die section. It was found that under isothermal conditions, extrudate swell plotted against the average wall shear stress gave rise to a temperature independent correlation for polystyrene. Under non-isothermal conditions, such a correlation did not exist, which might be due to the change of wall shear stress in the axial direction. The extrudate swell in the non-isothermal cases can be better correlated with the wall shear stress at die exit. For the two-hole die, changes of die wall temperature varied both the flow rate ratio and the extru date swell ratio. The latter is, however, much less sensitive to the die wall temperature than the former.  相似文献   

4.
A method is proposed to describe the processing history in extrusion dies and its influence on the state of the polymer after processing. The approach differs from conventional processing analysis, which uses the shear viscosity function to calculate pressure drop vs flow rate relations. The approach also differs from heuristic analysis which tries to find empirical correlations between rheological observations and processing behavior. The method is applied to the flow in annular extrusion dies. An integral constitutive equation is chosen to calculate the flow and to describe the flow history at the die exit as memorized. In the analysis, the kinematics are locally approximated by isothermal steady shear flow. The velocity and the velocity gradient are used to determine the Finger strain tensor, the path lines, and the residence times of the deforming material elements. Measures of the state of the polymer at the die exit are chosen to be the stress ratio N1/2τ12 and the free recovery. The free recovery calculations presume that the extrudate is chopped into small volumes of homogeneous flow history. The results of the calculations show the polymer very sensitively reacts to small changes of the die geometry. Important applications of this analysis are film blowing and blow molding, where the extensional behavior during the blowing process outside the die depends greatly on the preceding shaping process inside the die.  相似文献   

5.
Abstract

A key factor which limits the production speed of the polymer die drawing process is the premature fracture of the material on exit from the die. In this paper, the growth of damage in the material during the die drawing process has been studied using a combination of thermoplastic finite element analysis and structural characterisation by means of scanning electron microscopy and small angle X-ray scattering for the specific case of die drawing of polyoxymethylene. It is demonstrated that special profiled dies offer a more beneficial strain rate distribution than the conventional conical dies and allow higher production speeds to be obtained. Voids grow in the material as a result of the tensile stresses pertaining near the die exit and then, crazes appear from within the material at a critical stress level leading ultimately to final fracture. The results suggest that although the crazes initiate at a critical stress, the extent of crazing at the maximum draw ratio obtained (~13) is independent of the type of die and hence the stress level. Fracture of the drawn product occurs at different stresses for different die profiles but always at the maximum draw ratio of 13, suggesting that this relates to the limiting extensibility of a molecular network.  相似文献   

6.
A three‐dimensional mathematical model was developed to investigate the nonisothermal, non‐Newtonian polymer flow through the dies used in the polystyrene foam extrusion process. The model, based on the computational fluid dynamics (CFD) code, Polyflow, allowed for the shear rate and temperature dependence of the shear viscosity of the blowing agent laden polystyrene melt. The model also accounted for viscous heating. The shear viscosity of the polystyrene‐blowing agent mixture was measured experimentally at several temperatures. The model was used to calculate pressure, flow, and temperature distributions in two different dies used for industrial‐scale extrusion of polystyrene foams. The article presents a selection of computed results to illustrate the effect of die design on uniformity of flow at the die exit, the overall pressure drop in the die, relative magnitudes of pressure drop in the land section versus the rest of the die, and temperature distribution in the die. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

7.
A polystyrene melt has been extruded through successive capillaries arranged to produce converging and diverging flow patterns through the twin orifices. Applied pressure at fixed mass flow rate through the combined dies is equal to the sum of the pressure drops in the single capillaries in both flow modes. The Bagley end correction was found to apply to each die in the sequence. Bagley plots were linear with a particular upper capillary at given apparent shear rate in the lower die. No effect of shear history could be detected on the viscous behavior of the polymer, but preshearing in converging flow produced a slight reduction in die swell.  相似文献   

8.
A theoretical study for analyzing the uniformity of flow from sheeting extrusion dies is presented. In this study it is assume that a slip condition exists at the wall of the die, the magnitude of slip velocity is proportional to the shear stress at the wall, the flow is isothermal and steady state, and a power law model is valid for viscosity. Two extrusion dies, T-dies and coat-hanger dies, are examined. The flow uniformity at the exit of the die is calculated and compared with that for a nonslip analysis. The discrepancies between the slip and nonslip models imply that the wall slip condition induces a significant nonuniform flow distribution. Traditional design criticism based on the nonslip model are invalid for flow with the wall slip condition, and it is necessary to increase the length of the die land to even the flow distribution at the exit of the die.  相似文献   

9.
肖兵  邓小珍 《中国塑料》2015,29(12):77-81
基于Bird-Carreau黏度模型,运用有限元方法对三维等温微管挤出成型流动模型进行了数值分析,主要研究了管壁厚度对微管挤出成型过程中挤出胀大、速度分布、剪切速率和口模压降等重要指标的影响。结果表明,当熔体入口体积流率相等时,随着管壁厚度的增大,挤出物挤出胀大率和横截面尺寸变化量增大;口模出口端面上熔体的二次流动增强,但挤出速度和剪切速率减小;熔体在口模内的压力降明显下降;适当增加管壁厚度,有利于提高微管挤出质量。  相似文献   

10.
The crystalline state deformation of high density polyethylene has been examined at an extrusion draw ratio of 30 over a range of temperatures and pressures. The experiments involve combined pushing (extrusion) and pulling through a conical die. The pressure dependence of the extrusion rate through conical dies is given by a logarithmic relation and the temperature dependence by an activation energy of ~95 kcal/mole. An equation established for the total applied force linearly relates the pulling and extrusion pressure components and represents a force balance at the die entrance and exit. Steady-state extrusion, with or without pulling, was feasible in a pressure range beyond which fractures occurred owing to strain rate and shear or tensile failure. Under some circumstances the extrusion rate was increased by ten times. The mechanical properties and mode of deformation were not affected by pull load and fibers with a tensile modulus of 55 GPa were produced at T < 110°C.  相似文献   

11.
12.
In this study, the effect of spinneret geometry, including the entrance angle α of the entrance channel, the length Ls, and the diameter D0 of the exit channel, on the spinning dynamics of dry‐jet wet‐spinning of cellulose/1‐butyl‐3‐methylimidazolium chloride ([BMIM]Cl) solution was simulated by using finite element method. Based on the mathematical model of dry‐jet wet‐spinning established in our previous work (Xia et al., Cellulose 2015, 22, 1963) the radial and axial profiles of velocity, pressure, and shear rate in the spinneret and the profiles of diameter, temperature, and tensile stress in the air‐gap region were obtained. From the simulated profiles, the effect of spinneret geometric parameters on the flow behavior and the pressure drop of polymer solution in the spinneret and the die‐swell ratio near the spinneret was discussed. The entrance angle α of the entrance channel mainly influences the flow behavior of polymer solution in the spinneret and the die‐swell effect near the spinneret. As the decrease of the entrance angle α of the entrance channel, the vortices in the spinneret could be removed and the die‐swell ratio decreases. The increase of the length Ls of the exit channel results in the increase of pressure drop in the spinneret and the decrease of the die‐swell ratio. It is also found that the increase of the diameter D0 of the exit channel reduces the flow velocity of polymer solution and decreases the pressure drop in the spinneret at a constant mass flow rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43962.  相似文献   

13.
赵良知  吴舜英 《塑料》2005,34(4):24-28
深入讨论了聚合物熔体在不同长径比、不同角度圆锥口模的挤出胀大现象及机理。对口模长径比较小的挤出胀大,由于熔体入口拉伸弹性变形来不及松弛,产生较大的挤出胀大;对长径比较大的口模,熔体在平直流道内停留时间较长,入口弹性形变逐渐松弛,这时主要是流动剪切应变引起的弹性变形,产生较弱的挤出胀大,比长径比小的挤出胀大来得小,并且聚合物熔体的挤出胀大随着长径比的增大而趋向一恒定值。结果还表明:聚合物熔体在圆锥口模的挤出胀大受到挤出口模入口角影响。当L/D较小时,挤出胀大与口模入口角有关;当L/D较大时,口模入口角对挤出胀大影响较小。  相似文献   

14.
The capillary die flow of high density and linear low density polyethylenes is simulated under slip conditions to investigate the origin of sharkskin melt fracture. As suggested in the literature, it is shown that sharkskin originates at the exit of the die and is due to the acceleration (high stretching rate) of the melt as it exits the die. It is also shown that both adhesion and slip promoters eliminate surface defects by decreasing the stretching rate of the polymer melt at the exit region of the die. The effect of length-to-diameter ratio of the die on the sharkskin melt fracture is also examined. It is found that sharkskin is more pronounced in short dies which is in accord with experimental observations. Finally, it is suggested that applied pressure at the capillary exit suppresses surface defects.  相似文献   

15.
Flow‐induced migration polyethylene‐co‐methacrylic acid (PE‐co‐MA) and polystyrene‐b‐polydimethylsiloxane (PS‐b‐PD MS) copolymer additives in commercial long‐chain branch polyethylene (PE) and narrow‐molecular distribution polystyrene (PS) hosts was investigated in a capillary flow device. Attenuated Total Reflection Fourier Transform Infrared (ATR‐FTIR) spectroscopy and Dynamic Contact Angle (DCA) measurements were used to characterize surface composition of polymer specimen following extrusion through metallic dies with various length‐to‐diameter (L/D) ratios, (1100 ? L/D ? 3000). Results from experiments covering a broad range of shear rates and polymer residence times in the dies are reported. Provided that the polymer residence time in the die is sufficiently long, shear is found to increase the concentrations of low molecular weight copolymer additives on the host polymer's surface. The surface composition of copolymer additive is found to vary strongly with the wall shear rate and die L/D ratio. Decreasing the die diameter at fixed flow rate is found, for example, to be a more effective method for enhancing transport of additive to a polymer's surface than increasing shear rate at fixed diameter. A mechanism based on shear‐induced diffusion is proposed to explain the observed migration.  相似文献   

16.
Practical extrusion processes often involve geometrically complex dies. Such dies are usually tapered, or streamlined, to achieve maximum output rate under conditions of laminar flow. These converging flows may be analysed in terms of their extensional and simple shear components to calculate the relationships between volume flow rate, pressure drop, and post extrusion swelling. The analysis can also be extended to cover the free convergence as fluid flows from a reservior into a die. Comparisons between predicted and observed data for a series of coni-cylindrical dies suggest that using this approach the pressure drop/flow rate relationship can be predicted within ±20% and the swell ratio/flow rate relationship within ±10%. Similar treatments have been in use for the last three years in solving such complex flow problems as radial flow in injection moulding and two-dimensional annular convergence in blow moulding dies.  相似文献   

17.
Two high density polyethylene resins—801 and 802— are examined with regard to their isothermal, time-dependent, and nonisothermal swelling properties when emerging from two annular and three diverging dies. The short time swelling characteristics of samples 801 and 802 are very important for these dies, resulting in a lower diameter swell for the latter, independent of the die geometry or flow rate. Output variations have much less impact on the swelling behavior than small changes in the geometry of the die mandrel. Accordingly, shear stress and shear rate parameters alone cannot be used to explain the swelling properties of a HDPE resin in the different die geometries. Straight annular dies induce higher diameter swelling than diverging dies.  相似文献   

18.
孙学雷  梁基照 《弹性体》1992,2(3):47-52
本文讨论了聚合物熔体在圆锥口型中的流动问题。应用改进的二阶流体的本构方程,建立起描述熔体入口流动中流速分布、剪切应力分布和法向应力差分布的数学模型,在此基础上,对熔体椎入口流动进行了数值模拟,并以混炼胶为试样,作了相应的实验研究。  相似文献   

19.
Relationships between the rheological, morphological, and tensile properties of an immiscible blend of 25 wt% of a thermotropic liquid crystalline polymer (LCP) with polycarbonate are presented. The shear viscosity of the blend is intermediate between the two constituent materials, and indicates immiscibility in the melt. Extrudate swell behavior is examined and found to be closely related to that of polycarbonate. The morphology of the dispersed LCP phase varies between droplets and oriented fibrils, and is highly correlated with changes in tensile properties. Fibrils are associated with increased tensile modulus, and their development is favored in the elongation flow fields present in the spinline and in the die convergence section. In all cases, blend stiffness is less than that predicted for a continuous fiber-reinforced composite. Enhanced tensile modulus is associated with both extrusion from shorter length dies and increases in spinline draw ratio, with the latter proving the most important in fibril formation.  相似文献   

20.
A systematic design of the classical “coat hanger” die is proposed and tested experimentally. The objectives of the design are 1. distribution of the polymer over the width of the die before it reaches the final lip section for thickness adjustment, 2. invariance of distribution to flow rate, 3. invariance to changes in polymer viscosity, and 4. uniform average residence time. The die design is based on a flow model which assumes power-law viscosity, steady shear flow In each cross-section, uniform temperature, and separation of the flows into a manifold component and a component in a slit section of uniform height. The design corrects for an oversimplification of the pressure gradient that was applied in previous studies; and it differs from previous designs by suggesting a rectangular cross-section for the manifold. Applications to side-fed dies for extrusion blow molding and to a sheet extrusion die achieved uniform distribution and did not require any additional flow corrections (such as choker bars or flexible lips). With the new design, the lip region of the die can freely be used for thickness control, fine tuning, or further shaping of the extrudate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号