首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《塑性工程学报》2016,(5):125-130
在Gleebe-3800热模拟机上对904L超级奥氏体不锈钢进行等温热压缩实验,实验温度为1 000℃~1 150℃,应变为0~0.8,应变速率为0.01s~(-1)~10s~(-1)。利用所得的应力应变值确定不同类型Johnson-Cook本构模型的材料参数。结果表明,3种模型中,最高相关系数为0.966,最低的平均相对误差为5.39%;对于实验值和预测值的吻合程度,低应变速率比高应变速率高。说明在应变速率较低时,本构模型能更有效的反映904L超级奥氏体不锈钢的高温动态流变应力;最佳的应力-应变关系是二次函数关系,变形温度、应变速率与流变行为关系是耦合关系。  相似文献   

2.
在应变速率为0.1~10 s~(-1)、变形温度为800~1200℃的变形条件下,利用Gleeble-1500热模拟机对304奥氏体不锈钢进行单向热压缩实验,研究其高温下的流变行为。根据实验数据,304奥氏体不锈钢的流变应力随温度和应变速率变化明显,应变速率越大,变形温度越低,流变应力越大。基于Arrhenius模型推导出材料的热变形本构方程,并算得材料的热变形激活能为486.0 k J·mol~(-1)。建立了真应变为0.7时的热加工图,结合微观组织分析表明:变形温度为1025~1200℃、应变速率为0.1~0.8 s~(-1)时,材料功率耗散系数大于26%,变形过程中发生动态再结晶,此范围为304奥氏体不锈钢的最佳工艺参数。  相似文献   

3.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

4.
利用Gleeble-3500热模拟试验机对新型奥氏体不锈钢CHDG-A进行单道次压缩试验,研究了该合金在950~1100℃和0.01~1 s~(-1)条件下的流变应力变化规律及变形组织演变规律。建立了新型奥氏体不锈钢CHDG-A的传统Arrhenius本构模型,耦合应变量后建立改进型本构模型,并引进相关系数R、平均相对误差δ评估改进型本构模型的预测精度。结果表明:在高温热变形过程中,新型奥氏体不锈钢CHDG-A的流变应力值受应变速率以及变形温度的影响显著,且动态再结晶更易在较低应变速率、较高变形温度条件下发生;应用改进型本构模型得到的流变应力预测值与试验值间的相关系数R为0.9944,而平均相对误差值δ仅为1.9952%,说明该本构模型能较好的预测新型奥氏体不锈钢CHDG-A的流变应力。  相似文献   

5.
采用Gleeble3800热模拟试验机对16Cr超级马氏体不锈钢进行高温热压缩试验,测得其高温流变应力曲线。通过双曲正弦模型构建了试验钢的热变形本构方程,获得了该钢的热变形表观激活能Q为533.018 k J/mol。根据材料动态模型绘制试验钢热加工图,结合高温变形后显微组织,确定可行热加工工艺参数:变形温度为925~1025℃,应变速率为0.01~0.1 s~(-1);变形温度为1050~1100℃,应变速率为0.1~10 s~(-1)。此时试验钢组织发生了完全动态再结晶,晶粒明显细化,且对应的能量耗散效率较高。  相似文献   

6.
为建立能准确描述316L不锈钢流动特性的本构模型并合理制定其热成形工艺参数,采用圆柱试样在Gleeble-3500热模拟试验机上对316L奥氏体不锈钢进行等温压缩变形试验,研究316L不锈钢在变形温度为900℃~1 100℃、应变速率为0.01s-1~2s-1条件下的流变行为,建立其热变形本构方程。结果表明,变形温度和应变速率对流变应力有明显影响,流变应力随变形温度升高而降低,随应变速率的增加而升高。建立了材料常数α,n,lnA,及应变激活能Q与应变之间的非线性关系;316L不锈钢的热变形行为可用包含Arrhenius项考虑应变、应变速率及温度影响的本构方程描述。通过相关系数r、平均相对误差(AARE)对本构方程的准确性进行分析,结果表明,该方程可以准确预测316L不锈钢的高温流变行为。  相似文献   

7.
采用Gleeble-3500型热模拟机,分析了2219铝合金在变形温度为330~450℃,应变速率为10~(-2)~10 s~(-1),统一压缩变形量为60%的条件下的热变形行为,研究了应变速率和变形温度对流变应力的影响,建立了超大型环形件用2219铝合金热变形时的本构方程和热加工图。结果表明:2219铝合金的流变应力随变形温度的升高和应变速率的降低而降低;基于应变-应变速率补偿模型建立的本构方程可以更好地预测其流变行为,实验值与预测值的相对误差的标准偏差为6. 7%,最大相对误差绝对值为18. 7%;确定了热加工最佳工艺参数区间:应变速率为10~(-2)~1. 2×10~(-2)s~(-1),变形温度为400~430℃。  相似文献   

8.
采用Gleeble-3500热模拟试验机在温度为400℃~500℃,应变速率为0.01 s~(-1)~10 s~(-1)条件下对Al-7.0Zn-2.9Mg合金进行热压缩试验,研究该合金的热变形行为及热加工特征,建立了应力-应变本构方程和加工图。结果表明,Al-7.0Zn-2.9Mg合金在热压缩变形过程中,随着应变速率的增加和变形温度的降低,合金流变应力逐渐增大,流变应力达到峰值后曲线呈现稳态流变特征;合金在试验条件下的平均变形激活能为157.8 k J/mol。真应变为0.5的加工图表明,该合金在400℃~500℃高温变形时安全区域主要存在于低应变速率的条件下,较合适的加工温度为450℃~475℃,应变速率为0.1 s~(-1)~0.01 s~(-1)。  相似文献   

9.
利用Gleebe-3800热模拟机对304Cu奥氏体不锈钢进行单道次高温压缩试验,研究其在1000~1200℃、0.1~10 s-1条件的流变行为,利用Johnson-Cook方程建立该材料的热变形本构模型.研究表明,温度和应变速率对304Cu奥氏体不锈钢的流变应力影响显著,流变应力随温度升高而减小,随应变速率增加而增大;基于Johnson-Cook方程的本构模型预测值与实验值较吻合,平均绝对误差为8.67%.  相似文献   

10.
在电子万能拉伸试验机上对TB8钛合金进行了恒应变速率超塑性拉伸试验(变形温度为720~880℃,应变速率为0.000 1~0.01s~(-1)),研究了拉伸流变行为,计算了超塑性拉伸变形激活能和相应的应力指数,建立了TB8钛合金应力-应变本构模型。结果表明,在同一应变速率下,流变应力随变形温度的增加而减少,同一变形温度下,流变应力随应变速率的增加而增加。在变形温度为840℃,应变速率为10~(-4) s~(-1),合金的伸长率最大,为356%;超塑性拉伸变形激活能和应力指数分别为251.25kJ/mol、2.389 5。  相似文献   

11.
12.
13.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

14.
15.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

16.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

17.
18.
钢材打捆机控制系统智能化技术的研究   总被引:1,自引:0,他引:1  
钢材打捆机是一种用于轧钢精整工艺的新型自动化设备,其控制系统基于SiemensS7 PLC和TP7触摸屏。系统的智能化技术主要包括:液压高低压自动控制、在线监视、离线故障检测、多台设备协同工作、可视化人机交互技术。本文描述了这些技术的原理与实现方法。  相似文献   

19.
C. Colinet 《Intermetallics》2003,11(11-12):1095
A large number of ab-initio calculations of energies of formation of intermetallic compounds have been performed in the last 15 years. The currently used methods are listed. The paper presents a review of the aluminium based compounds which have been studied. Comparisons of calculated and experimental enthalpies of formation are provided for aluminim-3d and-4d transition metal alloys at equiatomic composition. The modelling of the enthalpies of mixing of solid solutions based on a given lattice is described.  相似文献   

20.
Conclusions To provide a high level of mechanical properties in wrought blanks of cast ÉP741NP and ÉP962 alloys it is necessary to form controlled structures. A necklace-type structure formed in homogenizing isostatic treatment, subsequent thermomechanical working including alternation of the operations of deformation in the (+)-area and recrystallization anneals, and final heat treatment is preferable. The temperature conditions of all stages of thermomechanical working are strictly controlled, especially the final operation of deformation and heating for hardening. To eliminate hardening cracks and distortions it is necessary to use molten salts at t=600°C as quenchants. The use of multiple production operations makes it possible to significantly reduce the structural inhomogeneity related to inhertance of the original dendritic structure. However, the structure of the final semifinished product is nevertheless characterized by a difference in occurrence of the processes of polygonization and recrystallization between the former dendritic cells and the interdendritic spaces in deformation and heat treatment.To obtain structurally homogeneous blanks for gas turbine engine parts it is necessary to use basically new methods of remelting such as vacuum double electrode remelting and electron beam remelting with an intermediate vessel.Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 25–29, December, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号