共查询到20条相似文献,搜索用时 15 毫秒
1.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。 相似文献
2.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。 相似文献
3.
4.
5.
中文文本情感分析研究综述 总被引:3,自引:0,他引:3
对中文文本情感分析的研究进行了综述。将情感分类划分为信息抽取和情感识别两类任务,并分别介绍了各自的研究进展;总结了情感分析的应用现状,最后提出了存在的问题及不足。 相似文献
6.
文本情感是信息挖掘的一个新兴领域,近年受到管理学等相关领域的广泛关注。目前,文本情感分析使用的方法主要有情感词典方法和机器学习方法。由于文本情感分析的结果对优化政府、企业以及消费者决策具有重大意义,以文本情感分析的方法为视角,对情感词典的方法、有监督的机器学习方法和弱监督的深度学习方法以及其他方法的相关文献进行了梳理并做出评述。此外,指出虽然文本情感分析领域的学者基于情感词典和有监督的机器学习方法已提出许多情感分析模型,但准确率和效率普遍不高,进一步的研究重点应在于使用深度学习的方法处理文本情感,并提出未来的研究方向。 相似文献
7.
在情感倾向性分析领域,关于情感的收集、分析和聚合等技术一直是近年来的关注热点。该领域的相关发展带动了各个子任务及其相关研究的大力发展。本文主要综述了面向情感的信息系统中使用的情感分析相关的需求,技术,应用以及评测方法等。在情报分析方面,存在许多不同于传统的主题分析的新需求,这就是对情感分析技术的强烈需求。接着,介绍了词级、句子级、段落篇章级等不同层次的情感分析技术。然后,还综述了采用情感分析技术的各种典型应用。最后,为了工作开展的便利,讨论了情感分析领域的词库资源、样本集资源、评测方法及重要会议等。 相似文献
8.
9.
情感的迁移变化是外界刺激与个体感知共同作用的结果,本文着重就个体感知进行了探讨。首先就文本中情感的迁移规律进行了分析,讨论了心情与人格要素对情感迁移的影响。在此基础上,采用将语言特征与情感间迁移规律相结合的方法,通过机器学习实现了文本的情感分类。实验结果表明,情感分类的精确率相对传统方法提高了9.21%,方法的有效性得到了证明。 相似文献
10.
11.
短文本情感倾向分析是自然语言处理领域的关键研究问题之一.情感倾向分析是用于检测语言所蕴含主观倾向语义的一系列方法、技术和工具,是对文本深层语义理解的关键.短文本数据的随意性、高歧义性以及简短性使得传统基于特征工程和机器学习分类技术的情感倾向分析任务性能有限.随着深度学习技术在自然语言处理中的广泛应用,基于深度学习的短文... 相似文献
12.
13.
随着互联网的发展,社交网络、电子商务等已经成为人们关注的焦点,对社交网络的文本进行情感倾向性分析和挖掘变得越来越重要。该文针对网络上的中文文本,提出一种基于文本纹理特征的情感倾向性分类方法。通过测试多种文本纹理特征对文本情感倾向性的影响,成功将文本纹理特征融入情感分类中。通过计算各类特征与文本的情感倾向性的相关度,对特征进行降维。相对于基于词频的情感倾向性分类方法,查准率平均提高了10%左右。 相似文献
14.
文本情感倾向分析 总被引:3,自引:1,他引:3
近年来,文本情感倾向研究受到研究界和企业界越来越多的关注,成为了自然语言处理、信息检索、数据挖掘等领域的研究热点之一。随着研究的不断深入,大量情感倾向分析的新方法、新问题也不断涌现。该文重点对文本情感倾向研究的前沿进展进行概括和分析。首先,结合近年来的研究成果,对文本情感倾向分析的两类主要问题进行了定义,并归纳了不同的倾向性表示方法。接下来,对倾向性分类、倾向性信息抽取、语料库与评测以及倾向性分析应用等方面的研究现状进行介绍。最后,总结了情感倾向性分析技术并对未来的发展进行了展望。由于国内对于文本情感倾向分析的研究起步较早,在一些问题的研究上处于国际前沿水平,已经发表了许多高水平论文,该文也将对此加以介绍。 相似文献
15.
文本倾向性识别可以广泛应用于用户产品评论、舆情分析等。针对文本倾向性识别往往需要借助外部资源的问题,提出一种基于情感描述项及改进的互信息计算相结合的方法,通过句法分析提取出若干可以获得文本情感描述项的匹配模式,根据模式匹配及计算情感描述项的互信息作为特征值,训练分类模型得出文本的褒贬性。通过对酒店、手机语料集实验后的结果进行分析,该方法具有良好的效果。 相似文献
16.
在文本情感分析研究中,一条评论分别包含了篇章级、句子级和词语级等不同粒度的语义信息,而不同的词和句子在情感分类中所起的作用也是不同的,直接使用整条评论进行建模的情感分析方法则过于粗糙,同时也忽略了表达情感的用户信息和被评价的产品信息。针对该问题,提出一种基于多注意力机制的层次神经网络模型。该模型分别从词语级别、句子级别和篇章级别获取语义信息,并分别在句子级和篇章级引入基于用户和商品的注意力机制来计算不同句子和词的重要性。最后通过三个公开数据集进行测试验证,实验结果表明,基于多注意力层次神经网络的文本情感分析方法较其他模型性能有显著的提升。 相似文献
17.
朱俭 《计算机工程与应用》2014,50(8):211-214
文本情感分类是指通过挖掘和分析文本中的观点、意见和看法等主观信息,对文本的情感倾向做出类别判断。基于集成情感成员模型提出一种文本情感分析方法。把基于改进的神经网络、基于语义特征和基于条件随机场的三个情感分类模型作为成员模型集成在一起。集成后的模型能够涵盖不同的情感特征,从而克服了传统集成学习中仅关注成员模型处理结果的不足。以公开语料进行实验,集成模型融合了多个成员模型的优势,分类正确率达到了88.2%,远高于任一成员模型的效果。 相似文献
18.
近年来,卷积神经网络(convolutional neural network, CNN)和循环神经网络(recurrent neural network, RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit, BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果. 相似文献
19.
对文本倾向性分析方法进行了研究,并提出了一种基于情感Ontology的分析方法。首先基于《知网》构建情感Ontology,然后基于情感Ontology抽取文本倾向性分析的特征词汇并判断其情感倾向性,最后根据抽取的特征词汇对整篇文本的倾向性进行分析。实验结果表明,以实验语料中的所有词汇作为特征词汇,在Baseline的基础上,利用情感Ontology抽取特征词汇的文本倾向性分析方法可以使准确率达到86.76%。 相似文献
20.
在研究文本倾向性识别方法的基础上,分别实现基于文本分类、基于语义规则模式和基于情感词的倾向性分析算法.研究情感本体构建和基于HowNet与主题领域语料的情感概念选择方法,两者结合能提高情感本体中概念的全面性和领域针对性.利用情感本体抽取特征词并判断其情感倾向度,结合句法规则及程度副词影响,用特征情感倾向度作为特征权重,采用机器学习的方法对主题网络舆情web文本进行倾向性分析.实验表明,其分析结果有更高的准确率和召回率,实现方案的普遍性和稳定性值得进一步研究. 相似文献