首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical diffusion of lithium ion in Li3V2(PO4)3 were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The CV results show that there exists a linear relationship between the peak current (ip) and the square root of the scan rate (ν1/2). The impedance spectrum exhibits a single semicircle and a straight line in a very low frequency region. A linear behavior was observed for every curve of the real resistance as a function of the inverse square root of the angular frequency in a very low frequency region. The obtained chemical diffusion coefficient from EIS measurements varies within 10− 9 to 10− 8 cm2·s− 1, in good agreement with those from CV results.  相似文献   

2.
Crystal growth, thermal and optical characteristics of LiNd(WO4)2 crystal have been investigated. The LiNd(WO4)2 crystal up to Ø15 × 32 mm3 has been grown by Czochralski technique. The hardness is about 5.0 Mohs’ scale. The specific heat at 50 °C is 0.42 J g−1 K−1. The thermal expansion coefficient for c- and a- axes is 1.107 × 10−5 and 2.104 × 10−5 K−1, respectively. The absorption and fluorescence spectra and the fluorescence decay curve of LiNd(WO4)2 crystal were measured at room temperature. Some spectroscopic parameters such as the intensity parameters, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and emission cross sections were estimated.  相似文献   

3.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

4.
A new compound, Tl2[(UO2)2(MoO4)3], was prepared by a solid-phase reaction. The compound crystallizes in a rhombic system, space group Pna21, a = 20.1296(9), b = 8.2811(4), c = 9.7045(4), V = 1617.69(13) Å3, Z = 4. The crystal structrue was solved by the direct method and refined to R 1 = 0. 04 for 4884 unique reflections. The structural motif is a framework consisting of UO7 pentagonal bipyramids and MoO4 tetrahedra. The Tl coordination polyhedra are irregular, with seven and eight vertices. Large channels of the size 6 × 10.8 Å, occupied by Tl+ cations, are arranged parallel to the [001] direction. The compound is isostructural to the previously described α-Cs2(UO2)2(MoO4)3 and Rb2(UO2)2 (MoO4)3. __________ Translated from Radiokhimiya, Vol. 47, No. 5, 2005, pp. 408–411. Original Russian Text Copyright ? 2005 by Nazarchuk, Krivovichev, Burns.  相似文献   

5.
Approximate homogeneity ranges at about 1073 K have been determined for some (Mg,Me)3(PO4)2 solid solutions. X-ray powder diffraction data are given and the observed changes in unit cell dimensions are discussed. The Mg3(PO4)2 structure, isotypic with γ-Zn3(PO4)2, contains five- and six-coordinated cation sites, M1 and M2 respectively. The M1 site preference order is Zn2+ > Co2+ > Fe2+ > Mg2+ > Mn2+.  相似文献   

6.
The family of titanium Nasicon-phosphates of generic formula M0.5IITi2(PO4)3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn0.5IITi2(PO4)3 (MnTiP) and Co0.5IITi2(PO4)3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn0.5IITi2(PO4)3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) Å and c = 21.0083(3) Å (V = 1318.52(3) Å3 and Z = 6). The Co0.5IITi2(PO4)3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) Å and c = 21.174(2) Å (V = 1312.7(2) Å3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti2(PO4)3] framework composed of two [TiO6] octahedral interlinked via three [PO4] tetrahedra. 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.  相似文献   

7.
Crystals of (H3O)6[(UO2)5(SeO4)8(H2O)5](H2O)5 were prepared from aqueous solutions by evaporation. The crystal structure [monoclinic system, space group P21/m, a = 13.835(2), b = 13.4374(16), c = 14.310(3) Å, β = 108.004(14)°, V = 2530.1(7) Å 3] was solved by the direct method and refined to R 1 = 0.090 for 4409 reflections with |F hkl ≥ 4σ|F hkl |. The structure is based on [(UO2)5(SeO4)8(H2O)5]6− layers arranged parallel to the (101) plane; these layers have a unique topological structure. The U(1)O6(H2O) and U(3)O6(H2O) linked through selenate groups form chains running along [ [`1]\bar 1 01] direction. The chains are combined in layers by U(2)O6(H2O) bipyramids. The layers are linked with each other by hydrogen bonds through the H2O and H3O+ groups located between the layers.  相似文献   

8.
Crystals of (H3O)2[(UO2)2(SeO4)3(H2O)2](H2O)3.5 were prepared from aqueous solutions by evaporation. The crystal structure [monoclinic system, space group P21/m, a = 11.9402(11), b = 13.6452(14), c = 13.7271(12) Å, β = 109.436(7)°, V = 2109.1(3) Å3] was solved by the direct method and refined to R 1 = 0. 048 (wR 2 = 0. 082) for 3677 reflections with |F hkl |F hkl |. The structure consists of [(UO2)2(SeO4)3(H2O)2]2− layers arranged parallel to the (010) plane. The layers are formed by uranium and selenium coordination polyhedra sharing common vertices and are linked with each other by hydrogen bonds through the H2O and H3O+ groups arranged between the layers. __________ Translated from Radiokhimiya, Vol. 47, No. 5, 2005, pp. 412–414. Original Russian Text Copyright ? 2005 by Krivovichev, Kahlenberg.  相似文献   

9.
The structure of new double benzoates of hexavalent actinides, K11(AnO2)23(O2C7H5)57(H2O)18+x (An = U, Np), was studied. There are five crystallographically independent actinide atoms in the crystals. The coordination polyhedra of An(1), An(3), An(4), and An(5) are distorted hexagonal bipyramids, and that of An(2) is a distorted pentagonal bipyramid. Ten crystallographically independent benzoate ions have been found in the crystals. All but one anions are bidentate chelating and form with AnO22+ cations either electrically neutral [AnO2(O2C7H5)2(H2O)2][An(1)O22+ cations] or negatively charged [AnO2(O2C7H5)3][An(3)O22+, An(4)O22+, An(5)O22+ cations] complexes. The bidentate bridging benzoate ion links two adjacent An(2)O22+ cations with the formation of peculiar electrically neutral cyclic fragments [AnO2(O2C7H5)2(H2O)]6 arranged perpendicular to the c-axis. There are three independent K+ cations in the structure. The coordination surrounding of K(1)+ (coordination number CN 6) is formed by oxygen atoms of two electrically neutral [AnO2(O2C7H5)2(H2O)2] fragments and of the complex anion [AnO2(O2C7H5)3]. The coordination surrounding of K(2)+ (CN 6) consists of oxygen atoms of three complex anions [AnO2(O2C7H5)3]. The disordered K(3)+ cation is arranged near the sixfold axis between the cyclic fragments [AnO2(O2C7H5)2(H2O)]6. An important structure-forming factor in the crystals is hydrogen bonding involving coordinated water molecules. In the coordination polyhedra of actinides, the An-O bond lengths regularly decrease in going from U to Np owing to actinide contraction.  相似文献   

10.
The title compound, (N4C6H21)·(Co(H2PO4)(HPO4)2), was prepared hydrothermally (473 K, 10 days, autogenous pressure), in the presence of the tris(2-aminoethyl)amine as organic template. Its structure is built up from a network of four membered-rings, formed by the vertex linkages between [CoO4] and [H2PO4] tetrahedra with [HPO4] moieties hanging from the Co center. Hydrogen bonds involving the cobalt phosphate units and the triply protonated amine molecule, contribute to the stability of the structure. The IR spectrum shows bands characteristic of the (N4C6H21)3+ cations and the (H2PO4) and (HPO4)2− phosphate anions. The UV-Visible-NIR spectrum confirms the tetrahedral coordination of Co2+ ions. The TGA analysis indicates that the dehydration of (N4C6H21)·(Co(H2PO4)(HPO4)2) occurs in one step. Magnetic measurements from 4.5 to 305 K show a weak antiferromagnetic character of this compound.  相似文献   

11.
A new lithium iron(III) phosphate, Li9Fe7(PO4)10, has been synthesized and is currently under electrochemical evaluation as an anode material for rechargeable lithium-ion battery applications. The sample was prepared via the ion exchange reaction of Cs5K4Fe7(PO4)101 in the 1 M LiNO3 solution under hydrothermal conditions at 200 °C. The fully Li+-exchanged sample Li9Fe7(PO4)102 cannot yet be synthesized by conventional high-temperature, solid-state methods. The parent compound 1 is a member of the Cs9−xKxFe7(PO4)10 series that was previously isolated from a high-temperature (750 °C) reaction employing the eutectic CsCl/KCl molten salt. The polycrystalline solid 1 was first prepared in a stoichiometric reaction via conventional solid-state method then followed by ion exchange giving rise to 2. Both compounds adopt three-dimensional structures that consist of orthogonally interconnected channels where electropositive ions reside. It has been demonstrated that the Cs9−xKxFe7(PO4)10 series possesses versatile ion exchange capabilities with all the monovalent alkali metal and silver cations due to its facile pathways for ion transport. 1 and 2 were subject to electrochemical analysis and preliminary results suggest that the latter can be considered as an anode material. Electrochemical results indicate that Li9Fe7(PO4)10 is reduced below 1 V (vs. Li) to most likely form a Fe(0)/Li3PO4 composite material, which can subsequently be cycled reversibly at relatively low potential. An initial capacity of 250 mAh/g was measured, which is equivalent to the insertion of thirteen Li atoms per Li9+xFe7(PO4)10 (x = 13) during the charge/discharge process (Fe2+ + 2e → Fe0). Furthermore, 2 shows a lower reduction potential (0.9 V), by approximately 200 mV, and much better electrochemical reversibility than iron(III) phosphate, FePO4, highlighting the value of improving the ionic conductivity of the sample.  相似文献   

12.
Nanocrystallites of tricobalt tetraoxide (Co3O4) have been synthesized by sol–gel process using cobalt acetate tetrahydrate, oxalic acid as precursors and ethanol as a solvent. The process comprises of gel formation, drying at 80 °C for 24 h to obtain cobalt oxalate dihydrate (α-CoC2O4·2H2O) followed by calcination at or above 400 °C for 2 h in air. These results combined with thermal analysis have been used to determine the scheme of oxide formation. The room temperature optical absorption spectra exhibits blue shift in both (i) ligand to metal (p(O2−) → eg(Co3+), 3.12 eV), and (ii) metal to metal charge transfer transitions (a) t2g(Co3+) → t2(Co2+), 1.77 eV, (b) t2(Co2+) → eg(Co3+), 0.95 eV together with the d–d transitions (0.853 and 0.56 eV) within the Co2+ tetrahedra. The temperature dependent ac electrical and dielectric properties of these nanocrystals have been studied in the frequency range 100 Hz to 15 MHz. There are two regimes distinguishing different temperature dependences of the conductivity (70–100 K and 200–300 K). The ac conductivity in both the temperature regions is explained in terms of nearest neighbor hopping (NNH) mechanism of electrons. The carrier concentration measured from the capacitance (C)–voltage (V) measurements is found to be 1.05 × 1016 m−3. The temperature dependent dc magnetic susceptibility curves under zero field cooled (ZFC) and field cooled (FC) conditions exhibit irreversibilities whose blocking temperature (TB) is centered at 35 K. The observed Néel temperature (TN  25 K) is significantly lower than the bulk Co3O4 value (TN = 40 K) possibly due to the associate finite size effects.  相似文献   

13.
This paper describes synthesis of bis-(4-(2-pyridylmethyleneiminophenyl))disulfide, 1, having the aurophilic disulfide moiety at one end and the chelating 2-pyridylmethyleneimine at the other, tethered by the p-phenylene bridge. Its complexes with Ni(II), Co(II) and Cu(II) were prepared and their electrochemical properties studied both in solution and, as self-assembled monolayers, on the gold surface with cyclic voltammetry. A theoretical semi-empirical and density functional study of the discrete paracyclophane-like complexes and their gold thiolates were carried out to get an insight into the structural information and to better understand the mechanism and the energetic of the redox processes. Both experimental and computational data suggest that the oxidation occurs by electron removal from the molecular orbitals (MO) localized on the gold thiolate moiety. On the contrary, the reducing electron is delivered to the MO localized in the vicinity of the chelated Ni2+, Co2+ or Cu2+. Atomic force microscopy data independently confirm the binding of Co2+ ions to ligand and the formation of the metallocomplex on the gold surface.  相似文献   

14.
The phase diagram of the ternary liquid system [Th(NO3)4(TBP)2]— [UO2(NO3)2(TBP)2]—decane was studied within the 298.15–333.15 K range. The system has the area of homogeneous solutions and area of binary liquid subsystems (with separation); one phase (I) is enriched in [Th(NO3)4(TBP)2] and [UO2(NO3)2·(TBP)2] and the other phase (II), in decane. The temperature does not substantially affect the area of phase separation. In two-phase systems, [UO2(NO3)2(TBP)2] is mainly concentrated in phase I, in spite of the fact that the binary system [UO2(NO3)2(TBP)2]—decane is single-phase in the entire temperature range studied. Concentration of [UO2(NO3)2(TBP)2] in phase I results in redistribution of [Th(NO3)4(TBP)2] into phase II. The points of the critical composition of the ternary system are compositions with similar content of the solvates [Th(NO3)4(TBP)2] and [UO2(NO3)2(TBP)2] at all the temperatures studied. __________ Translated from Radiokhimiya, Vol. 47, No. 6, 2005, pp. 520–522. Original Russian Text Copyright ? 2005 by Keskinov, Mishina, Pyartman.  相似文献   

15.
A series of halosilicate phosphor, Ba5SiO4(F,Cl)6:Eu2+, were synthesized by a solid state reaction. Excited by 370-nm light, Ba5SiO4Cl6:Eu2+ exhibits a broad emission band peaking at 440 nm. Partial substitution of Cl with F in the host lattice leads to red-shift in the emission band with centering wavelength from 440 nm to 503 nm. The possible mechanism for the luminescence change was discussed based on the XRD patterns. Blue and green LEDs were fabricated by combination of a 370 nm-emitting near UV chip and the optimal Ba5SiO4Cl6:Eu2+ and Ba5SiO4(F3Cl3):Eu2+, respectively. This series of phosphors is considered as a promising blue and green component used in fabrication of near UV-based white LEDs.  相似文献   

16.
Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl-KCl-K2CO3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO32 − ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon.  相似文献   

17.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

18.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

19.
20.
The phase diagrams of the ternary systems [Th(NO3)4(TBP)2]-[UO2(NO3)2(TBP)2]-isooctane in the temperature range 298.15–333.15 K were constructed. These diagrams contain the field of homogeneous solutions and the field of separation into two liquid phases (I, II). Phase I is enriched in [Th(NO3)4(TBP)2] and [UO2(NO3)2(TBP)2], and phase II is enriched in isooctane. With increasing temperature from 298.25 to 333.15 K, the mutual solubility of Th(NO3)4(TBP)2 and isooctane does not change noticeably, but the two-phase fields somewhat contract. In the two-phase systems [UO2(NO3)2(TBP)2] is preferentially distributed in phase I, although the binary system [UO2(NO3)2(TBP)2]-isooctane is single-phase over the entire temperature range examined. The preferential accumulation of [UO2(NO3)2(TBP)2] in phase I causes the redistribution of [Th(NO3)4(TBP)2] and isooctane into phases II and I, respectively. The compositions of the ternary systems in the critical points at different temperatures were determined. The electronic absorption spectra of uranyl nitrate solvate with TBP in the homogeneous and two-phase systems were recorded and analyzed. Original Russian Text ? A.K. Pyartman, V.A. Keskinov, V.V. Lishchuk, Ya.A. Reshetko, 2007, published in Radiokhimiya, 2007, Vol. 49, No. 5, pp. 420–422.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号