首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
The orphan nuclear receptor RORbeta is expressed in areas of the central nervous system which are involved in the processing of sensory information, including spinal cord, thalamus and sensory cerebellar cortices. Additionally, RORbeta localizes to the three principal anatomical components of the mammalian timing system, the suprachiasmatic nuclei, the retina and the pineal gland. RORbeta mRNA levels oscillate in retina and pineal gland with a circadian rhythm that persists in constant darkness. RORbeta-/- mice display a duck-like gait, transient male incapability to sexually reproduce, and a severely disorganized retina that suffers from postnatal degeneration. Consequently, adult RORbeta-/- mice are blind, yet their circadian activity rhythm is still entrained by light-dark cycles. Interestingly, under conditions of constant darkness, RORbeta-/- mice display an extended period of free-running rhythmicity. The overall behavioral phenotype of RORbeta-/- mice, together with the chromosomal localization of the RORbeta gene, suggests a close relationship to the spontaneous mouse mutation vacillans described >40 years ago.  相似文献   

2.
We used in situ hybridization histochemistry to study the expression of the mRNA of the two vesicular monoamine transporters (VMAT1 and VMAT2) during embryonic and postnatal development of the central nervous system (CNS) in the rat. In the adult rat, VMAT2 mRNA is present exclusively in monoaminergic cell groups of the CNS and VMAT1 mRNA was reported to be present in the adrenal medulla and certain intestinal epithelial cells. In contrast to the above, the expression of VMAT1 mRNA has previously never been detected in the central nervous system. This study shows the first evidence that both transporter molecules are expressed in CNS during ontogenesis. We here demonstrate four main expression patterns detected during development: 1. VMAT2 mRNA expression in monoaminergic neurons of the brainstem beginning as early as embryonic day E13. 2. Expression of VMAT2 mRNA in all major sensory relay nuclei of central nervous system. 3. Co-expression of VMAT1 and VMAT2 mRNA in most limbic structures, basal ganglia, as well as in some hypothalamic nuclei. 4. Exclusive expression of VMAT1 mRNA in the neocortical subventricular zone, in the amygdala at early (E15-18) and late (P1-P28) timepoints, the granular cell layer of cerebellum, and in several brainstem motor nuclei. Based on their distribution during development we suggest that monoamines, released in a controlled fashion, might affect wiring of sensory and also motor circuits. VMAT1 mRNA expression may reflect a specific effect of monoamines in glial differentiation and cerebellar granule cell migration and/or differentiation.  相似文献   

3.
In young rats, AT2 receptors and AT2 receptor mRNA are discretely localized in neurons of the inferior olive, with highest expression in the medial nucleus. We previously detected AT2 receptor binding, but not AT2 receptor mRNA, in the molecular layer of the cerebellar cortex. To determine whether AT2 receptors are expressed in climbing fiber terminals which arise to the molecular layer from the inferior olive and innervate Purkinje cells, we chemically destroyed olivary neurons of 2-week-old rats by intraperitoneal (i.p.) injection of the neurotoxin 3-acetylpyridine. Lesions of the inferior olive reduced [125I]Sar1-Ang II binding to AT2 receptors and AT2 receptor mRNA levels in this area by 50%, and produced a similar decrease in AT2 receptor binding in the molecular layer of the cerebellar cortex. The extent of binding reduction was similar 3 days and 7 days after the lesion. 3-Acetylpyridine lesions did not change [125I]Sar1-Ang II binding to AT1 receptors in the molecular layer of the cerebellar cortex or AT1 receptor mRNA levels in Purkinje cells. AT2 receptor binding and AT2 receptor mRNA levels in the deep cerebellar nuclei were also not affected by 3-acetylpyridine. Our results support the hypothesis that AT2 receptors are produced by inferior olivary neurons and transported through climbing fibers to the molecular layer of the cerebellar cortex. The high expression of AT2 receptors in the inferior olivary-cerebellar pathway during a crucial time in postnatal development of climbing fiber-Purkinje cell connectivity suggest a role of AT2 receptors in the development of this pathway.  相似文献   

4.
The thalamic nuclei at the medial border of the medial geniculate body (i.e. the suprageniculate nucleus, the medial division of the medial geniculate nucleus, the posterior intralaminar nucleus and the peripeduncular nucleus) which relay sensory information to the amygdala are thought to receive convergent input from multiple sites. In order to delineate the organization of these multimodal thalamic nuclei, the locations of superior and inferior collicular neurons projecting to these nuclei were studied by means of retrograde transport methods. Small injections of the tracer Miniruby were made into single paralaminar thalamic nuclei. Injections of Miniruby into the suprageniculate nucleus labelled predominantly neurons in the stratum opticum of the superior colliculus, whereas injections into the medial division of the medial geniculate body, the posterior intralaminar nucleus and the peripeduncular nucleus labelled predominantly neurons in the deep layers of the superior colliculus. These injections also labelled neurons in the inferior colliculus. The majority of retrogradely labelled neurons were found in the external nucleus of the inferior colliculus and here predominantly in layer 2. Injections focused onto the medial division of the medial geniculate body additionally labelled magnocellular neurons in layer 3 of the external nucleus and a few neurons in the central nucleus. More ventrally located injections, focused onto the posterior intralaminar and peripeduncular nucleus, almost exclusively labelled neurons in layer 1 of the external nucleus and the dorsal part of the dorsal nucleus. After injections into the suprageniculate nucleus, only neurons in layer 2 were found. Neurons in the central nucleus of the inferior colliculus were only found after injections that involved the medial division of the medial geniculate body. The present results suggest that, despite a considerable degree of convergence in this thalamic region, each of these thalamic nuclei receives a unique pattern of projections from the superior and inferior colliculi. It appears that the thalamic nuclei may be concerned mainly, but not exclusively, with a single sensory modality, and give rise to parallel multimodal and unimodal pathways to the amygdala.  相似文献   

5.
Accumulating evidence indicates that the insulin-like growth factors (IGFs) can act as neurotrophic factors. A family of at least six IGF binding proteins (IGFBPs) has been characterized. The IGFBPs prolong the half-life of IGFs in plasma and may modulate IGF action in a cell- or tissue-specific fashion. Two recently characterized IGFBPs, IGFBP-4 and -5, have been shown by northern blot hybridization to be expressed in rat brain, but their cellular sites of synthesis are poorly characterized. Because IGFBP-4 and IGFBP-5 could potentially modulate IGF actions in the brain, we used in situ hybridization histochemistry and 35S-labeled IGFBP-4 and IGFBP-5 riboprobes to localize sites of IGFBP-4 and -5 mRNA expression in adult rat brain. The two IGFBP mRNAs are abundantly expressed within discrete regions of brain. The expression patterns of the two genes are largely nonoverlapping. Notably, IGFBP-4 mRNA is highly expressed within hippocampal and cortical areas, whereas IGFBP-5 mRNA is not detected above background in these areas. Within the hippocampus, abundant IGFBP-4 mRNA expression is detected in pyramidal neurons of the subfields of Ammon's horn and the subiculum and in the granule cell layer of the anterior hippocampal continuation. In the cortex, IGFBP-4 mRNA is widely expressed in most areas and layers. In contrast, IGFBP-5, but not IGFBP-4, mRNA is detected within thalamic nuclei, leptomeninges, and perivascular sheaths. The distinct expression patterns of IGFBP-4 and -5 mRNAs within the brain suggest that these IGFBPs may modulate paracrine/autocrine actions of the IGFs in discrete brain regions or compartmentalization of the IGFs within the brain.  相似文献   

6.
Given the importance of phosphotyrosine signaling in growth cone dynamics, we have examined the embryonic and adult expression of receptor-like protein tyrosine phosphatases in sensory neurons and studied their responsiveness to nerve lesions in young adult animals. The phosphatases LAR, PTPsigma, and PTPalpha are expressed in most neurons of E14 and E18 rat embryo dorsal root ganglia, while BEM-1 is expressed in a more restricted subset of these neurons. These phosphatases continue to be expressed in young adult animals, suggesting that they have roles in mature as well as in developing dorsal root ganglia neurons. After an experimental sciatic nerve crush, the expression of the phosphatase genes was significantly and differentially altered in these neurons. PTPsigma mRNA was increased by 50% after 3 days, while LAR and PTPalpha expression dropped by 50 and 20%, respectively. BEM-1 mRNA levels were unaltered. These data show that mRNA levels of specific tyrosine phosphatase genes are highly responsive to nerve damage and may be reset to a new and potentially optimal pattern of expression more conducive for nerve regeneration. We propose that tyrosine phosphatases are not only involved in primary axonogenesis but can also now be implicated in the molecular control of adult nerve repair.  相似文献   

7.
8.
The messenger RNA expression of non-N-methyl-D-aspartate glutamate receptor subunits (GluR1-4), considered alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid type, was investigated in rat brain by in situ hybridization histochemistry using oligonucleotide probes specific to each subunit sequence. GluR1-4 subunit messenger RNAs were expressed widely and abundantly throughout the CNS. However, the combination of expression pattern varied notably according to location. GluR2 messenger RNA was expressed most strongly and widely, with most areas except the Bergmann glia containing this messenger RNA. GluR4 messenger RNA was also present widely, although the expression level was low. However, we observed many areas which lacked or expressed very little GluR1 messenger RNA, such as some nuclei in the general motor system and auditory system. In addition, some nuclei in the hypothalamus and general somatosensory system lacked or expressed very little GluR3 messenger RNA. These results suggest that in the rat CNS non-N-methyl-D-aspartate receptors varied their composition according to the area where they were expressed, and that the combination pattern might be related to the functional role of neurons.  相似文献   

9.
The distribution and regulation of galanin-R1 receptor (GAL-R1-R) mRNA has been studied in the anterior and mid-diencephalon by using in situ hybridization. Moreover, possible colocalization of GAL-R1-R mRNA and prepro-galanin or vasopressin mRNAs has been analyzed at the cellular level using double in situ hybridization methodology. Many nuclei in the hypothalamus expressed GAL-R1-R mRNA, including the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Strong expression was also seen in the same sections in various areas outside of the diencephalon. The distribution patterns are similar to those described in earlier studies. Double labeling experiments showed GAL-R1-R mRNA in vasopressin neurons in the PVN and SON. Moreover, GAL-R1-R mRNA and prepro-galanin mRNA were colocalized in several hypothalamic nuclei. GAL-R1-R mRNA levels showed a high degree of plasticity. Thus, salt loading resulted in a marked increase in GAL-R1-R mRNA levels in the PVN and SON and a moderate decrease was seen during lactation. In contrast, hypophysectomy caused a decrease in GAL-R1-R mRNA levels. Differential effects of colchicine were recorded with a decrease of GAL-R1-R mRNA in the magnocellular hypothalamic neurons. After salt loading or during lactation, GAL-R1-R mRNA and prepro-galanin mRNA were regulated in parallel, whereas their levels changed in opposite directions after hypophysectomy and colchicine injection. In conclusion, GAL-R1-Rs are present in several hypothalamic nuclei, partly in neurons synthesizing galanin. The receptors are regulated in a specific fashion in the various nuclei, depending on the stimulus applied. The results suggest that the effect of galanin in the hypothalamus partly depends on the state of receptor expression.  相似文献   

10.
11.
Angiotensin IV (Val Tyr Ile His Pro Phe), administered centrally, increases memory retrieval and induces c-fos expression in the hippocampus and piriform cortex. Angiotensin IV binds to a high affinity site that is quite distinct in pharmacology and distribution from the angiotensin II AT1 and AT2 receptors and is known as the AT4 receptor. These observations suggest that the AT4 receptor may have multiple central effects. The present study uses in vitro receptor autoradiography, and employs [125I]angiotensin IV to map AT4 receptors in the macaca fascicularis brain. The distribution of the AT4 receptor is remarkable in that its distribution extends throughout several neural systems. Most striking is its localization in motor nuclei and motor associated regions. These include the ventral horn spinal motor neurons, all cranial motor nuclei including the oculomotor, abducens, facial and hypoglossal nuclei, and the dorsal motor nucleus of the vagus. Receptors are also present in the vestibular, reticular and inferior olivary nuclei, the granular layer of the cerebellum, and the Betz cells of the motor cortex. Moderate AT4 receptor density is seen in all cerebellar nuclei, ventral thalamic nuclei and the substantia nigra pars compacta, with lower receptor density observed in the caudate nucleus and putamen. Abundant AT4 receptors are also found in areas associated with cholinergic nuclei and their projections, including the nucleus basalis of Meynert, ventral limb of the diagonal band and the hippocampus, somatic motor nuclei and autonomic preganglionic motor nuclei. AT4 receptors are also observed in sensory regions, with moderate levels in spinal trigeminal, gracile, cuneate and thalamic ventral posterior nuclei, and the somatosensory cortex. The abundance of the AT4 receptor in motor and cholinergic neurons, and to a lesser extent, in sensory neurons, suggests multiple roles for the AT4 receptor in the primate brain.  相似文献   

12.
Neuronal replacement occurs in the forebrain of juvenile and adult songbirds. To address the molecular processes that govern this replacement, we cloned the zebra finch insulin-like growth factor II (IGF-II) cDNA, a factor known to regulate neuronal development and survival in other systems, and examined its expression pattern by in situ hybridization and immunocytochemistry in juvenile and adult songbird brains. The highest levels of IGF-II mRNA expression occurred in three nuclei of the song system: in the high vocal center (HVC), in the medial magnocellular nucleus of the neostriatum (mMAN), which projects to HVC, and to a lesser extent in the robust nucleus of the archistriatum (RA), which receives projections from HVC. IGF-II mRNA expression was developmentally regulated in zebra finches. In canary HVC, monthly changes in IGF-II mRNA expression covaried with previously reported monthly differences in neuron incorporation. Combining retrograde tracers with in situ hybridization and immunocytochemistry, we determined that the HVC neurons that project to area X synthesize the IGF-II mRNA, whereas the adjacent RA-projecting neurons accumulate the IGF-II peptide. Our findings raise the possibility that within HVC IGF-II acts as a paracrine signal between nonreplaceable area X-projecting neurons and replaceable RA-projecting neurons, a mode of action that is compatible with the involvement of IGF-II with the replacement of neurons. Additional roles for IGF-II expression in songbird brain are likely, because expression also occurs in some brain areas outside the song system, among them the cerebellar Purkinje cells in which neurogenesis is not known to occur.  相似文献   

13.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

14.
15.
The central natriuretic peptide system is composed of at least three structurally homologous and uniquely distributed peptides and receptors which are thought to be involved in the central regulation of cardiovascular and autonomic function and more recently been shown to affect cellular growth and proliferation, processes pertinent to mammalian development. As such, following our initial mapping of preproatrial natriuretic peptide (ppANP) mRNA in adult brain [M.C. Ryan, A.L. Gundlach, Anatomical localization of preproatrial natriuretic peptide mRNA in the rat brain by in situ hybridization histochemistry: in olfactory regions, J. Comp. Neurol., 356 (1995) 168-182], it was of interest to determine the ontogenic expression of natriuretic peptide mRNAs in the developing rat brain. Using in situ hybridization histochemistry of specific [35S]- or [33P]-labeled oligonucleotides, ppANP and preproC-type natriuretic peptide (ppCNP) mRNAs were detected in the developing rat brain from postnatal day 4 to day 60 (adult). PpANP mRNA was observed in many hindbrain, but only some forebrain, regions at postnatal day 4. Regional differences in the temporal expression of ppANP mRNA were apparent with ppANP mRNA detected in the medial preoptic area, mammillary nuclei and medial habenular nucleus at postnatal day 4 and in other areas including the arcuate and dorsomedial hypothalamic nuclei and in olfactory and limbic regions at postnatal day 10. A number of regions also exhibited transient expression of ppANP mRNA such as the bed nucleus of the stria terminalis and the medial cerebellar nucleus. In contrast, ppCNP mRNA was detected at relatively high levels in several regions on postnatal day 4 including olfactory nuclei, the hippocampus and particularly the pontine nucleus. The level of expression appeared to increase markedly in most regions including forebrain olfactory and hippocampal areas and in brainstem regions including the pontine nucleus, the parvocellular and lateral reticular and spinal trigeminal nuclei by postnatal days 10 and 13, but decreased from this peak to equivalent to adult levels by postnatal day 28. The differential and transient expression of the natriuretic peptides during postnatal development, together with previous reports of the ontogenic regulation of natriuretic peptide receptor expression and binding patterns, further suggests their involvement in developmental processes in the rat CNS and provides information relevant to the likely functional development of natriuretic peptide-utilizing pathways.  相似文献   

16.
We have studied the distribution and regulation of the P2X3 receptor (a ligand-gated ion channel activated by ATP) in adult dorsal root ganglion (DRG) neurons using a polyclonal antibody. P2X3 receptor immunoreactivity was normally present in about 35% of L4/5 DRG neurons, virtually all small in diameter. In the dorsal horn, P2X3 receptor expression was restricted to the terminals of sensory neurons terminating in lamina IIinner. P2X3 receptors were expressed in approximately equal numbers of sensory neurons projecting to skin and viscera but in very few of those innervating skeletal muscle. P2X3 receptors were found mostly in sensory neurons that bind the lectin IB4. After sciatic nerve axotomy, P2X3 receptor expression dropped by more than 50% in L4/5 DRG. Glial cell line-derived neurotrophic factor (GDNF), delivered intrathecally, completely reversed axotomy-induced down-regulation of the P2X3 receptor. We conclude that P2X3 receptors are normally expressed in nociceptive primary sensory neurons, predominantly the nonpeptidergic nociceptors. P2X3 receptors are down-regulated following peripheral nerve injury and their expression can be regulated by GDNF.  相似文献   

17.
Integrins are a large family of cell adhesion receptors mediating cell-extracellular matrix (ECM) interactions and are widely distributed in tissues. The beta8 integrin subunit mRNA has been shown to be expressed at higher levels in the central nervous system (CNS) than in other organs [M. Moyle, M.A. Napier, J.W. McLean, Cloning and expression of a divergent integrin subunit beta8, J. Biol. Chem. 266 (29) (1991) 19650-19658] but its cellular and subcellular localization in the CNS are unknown. In this report, we demonstrate that beta8 pairs exclusively with the alphav subunit in the CNS to form the alphavbeta8 heterodimer. Immunohistochemical analysis of the distribution of beta8 in adult mouse and rat brains revealed that the protein is expressed in several regions of the hippocampal formation and in the molecular layer and glomeruli of the granular cell layer of the cerebellum. Punctate and diffuse immunolabeling was observed occasionally surrounding neuronal pericarya and extensively throughout dendritic fields suggesting both pre- and post-synaptic localization and/or expression in non-neuronal cells. By immunoelectron microscopy, beta8 immunoreactivity was detected in dendritic spines where it was often localized at post-synaptic densities, occasionally in axon terminals and in glial processes. Association of beta8 with synaptic membranes was further supported by its enrichment in synaptosomal preparations as detected by immunoblotting. These results demonstrate that alphavbeta8 is present in mature synapses and therefore may play a role in synaptic function.  相似文献   

18.
A novel member of the opioid receptor family (ORL-1) has been cloned from a variety of vertebrates. ORL-1 does not bind any of the classical opioids, although a high affinity endogenous agonist with close homology to dynorphin has recently been identified. We have generated a monoclonal antibody to the N-terminus of ORL-1 to map areas of receptor expression in rat central nervous system (CNS). Intense and specific immunolabeling was observed in multiple areas in the diencephalon, mesencephalon, pons/medulla, and spinal cord. In the telencephalon, intense labeling was observed in the neuropil throughout layers II-V in the neocortex, the anterior olfactory nuclear complex, the pyriform cortex, the CA1-CA4 fields and dentate gyrus of the hippocampus, and in many of the septal and basal forebrain areas. In contrast to other members of the opioid receptor family, light labeling for ORL-1 was observed in telencephalic areas such as caudate-putamen. In the cerebellum, ORL-1 immunoreactivity was only observed in the deep nuclei. Throughout the CNS the majority of labelling was localized to fiber processes and fine puncta, although labeled scattered perikarya were observed in a few brain areas such as the hilus dentate in the hippocampus and some nuclei in the brainstem and spinal cord. The present mapping study is consistent with the reported distribution of ORL-1 mRNA and provides the first immunohistochemical report on anatomical and cellular distribution of ORL-1 receptor in the rat CNS.  相似文献   

19.
The effect of interleukin-6 (IL-6) on metallothionein-I (MT-I) and MT-III expression in the brain has been studied in transgenic mice expressing IL-6 under the regulatory control of the glial fibrillary acidic protein gene promoter (GFAP-IL6 mice), which develop chronic progressive neurodegenerative disease. In situ hybridization analysis revealed that GFAP-IL6 (G16-low expressor line, and G36-high expressor line) mice had strongly increased MT-I mRNA levels in the cerebellum (Purkinje and granular layers of the cerebellar cortex and basal nuclei) and, to a lesser degree, in thalamus (only G36 line) and hypothalamus, whereas no significant alterations were observed in other brain areas studied. Microautoradiography and immunocytochemistry studies suggest that the MT-I expression is predominantly localized to astrocytes throughout the cerebrum and especially in Bergman glia in the cerebellum. However, a significant expression was also observed in microglia of the GFAP-IL6 mice. MT-III expression was significantly increased in the Purkinje cell layer and basal nuclei of the cerebellum, which was confirmed by Northern blot analysis of poly(A)+ mRNA and by ELISA of the MT-III protein. In contrast, in the G36 but not G16 mice, transgene expression of IL-6 was associated with significantly decreased MT-III RNA levels in the dentate gyrus and CA3 pyramidal neuron layer of the hippocampus and, in both G36 and G16 mice, in the occipital but not frontal cortex and in ependymal cells. Thus, both the widely expressed MT-I isoform and the CNS specific MT-III isoform are significantly affected in a MT isoform- and CNS area-specific manner in the GFAP-IL6 mice, a chronic model of brain damage.  相似文献   

20.
The peptides neurotensin (NT) and neuromedin N exert effects on neurons by means of a high-affinity NT receptor (NTRH) belonging to the superfamily of G-protein-coupled receptors. In the present study, we used in situ hybridization histochemistry with sensitive riboprobe methodology to investigate the distribution of NTRH mRNA in the forebrain of adult rats. Labeled cells were abundant in the hypothalamus, epithalamus, ventral thalamus, septum, amygdala, and pallidum, including many regions where NTRH mRNA had not been detected previously. In the hypothalamus, novel sites of NTRH mRNA expression included the arcuate, periventricular, paraventricular, supraoptic, medial preoptic, anterior, ventromedial, and posterior nuclei, as well as the lateral hypothalamic area. In the thalamus, novel sites of expression included the anterodorsal nucleus, lateral habenula, and zona incerta, where labeling was much more extensive than previously reported. Novel telencephalic sites of expression included most bed nuclei of the stria terminalis, most divisions of the amygdala, the main olfactory bulb, the endopiriform nucleus, the claustrum, many parts of retrohippocampal allocortex, and limited parts of most isocortical areas. Novel sites of expression were also observed in the midbrain and pons. Taking into account expected differences in the subcellular locations of receptor mRNA and protein, the regional distribution of NTRH mRNA agrees well with that of NTRH determined previously. Our results identify many novel sites of NTRH mRNA expression in adult brain and provide a basis for investigating involvement of NT and related peptides in regulating the activity of these diverse cells, whose phenotypes remain largely undetermined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号