首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigate the performance of Cu(In1−x,Gax)Se2/Zn(O1−z,Sz) solar cells by changing the gallium content of the absorber layer in steps from CuInSe2 to CuGaSe2 and at each step vary the sulfur content of the Zn(O,S) buffer layer. By incorporating more or less sulfur into the Zn(O,S) buffer layer it is possible to change its morphology and band gap energy. Surprisingly, the best solar cells with Zn(O,S) buffer layers in this study are found for close to or the same Zn(O,S) buffer layer composition for all absorber Ga compositions. In comparison to their CdS references the best solar cells with Zn(O,S) buffer layers have slightly lower open circuit voltage, Voc, lower fill factor, FF, and higher short circuit current density, Jsc, which result in comparable or slightly lower conversion efficiencies. The exception to this trend is the CuGaSe2 solar cells, where the best devices with Zn(O,S) have substantially lowered efficiency compared with the CdS reference, because of lower Voc, FF and Jsc. X-ray photon spectroscopy and X-ray diffraction measurements show that the best Zn(O,S) buffer layers have similar properties independent of the Ga content. In addition, energy dispersive spectroscopy scans in a transmission electron microscope show evidence of lateral variations in the Zn(O,S) buffer layer composition at the absorber/buffer layer interface. Finally, a hypothesis based on the results of the buffer layer analysis is suggested in order to explain the solar cell parameters.  相似文献   

2.
High-performance Cu(InGa)Se2 (CIGS) thin-film absorbers with an intentionally graded band-gap structure have been fabricated by a simple two-stage method using In/Cu–Ga/Mo stacked precursors and H2Se gas. Additional sulfurization step to form a thin Cu(InGa)(SeS)2 (CIGSS) surface layer on the absorber is necesarry to improve the device performance. In order to understand the role of S incorporated into CIGS absorber, approaches with S are discussed. One approach is carried out by changing the condition of our absorber formation process. It is verified to be possible to incorporate more S into the CIGS absorber, but difficult to improve the device performance with higher S contained CIGS absorbers because of decrease in FF. The incorporated S is concluded to be effective to improve the pn heterojunction quality due to the passivation of surface and grain boundary of CIGS absorber through the formation of a thin CIGSS surface layer.  相似文献   

3.
We study the degradation of photovoltaic cells with poly(3-hexyl thiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) blends under long-term continuous illumination as well as in shelf-life conditions, both in inert N2 atmosphere. Degradation of the illuminated solar cells mainly occurs by a rapid decrease of the fill factor (FF) after 300 h, while short-circuit current and open-circuit voltage follow a linear decay after the initial burn-in. The sudden drop of the FF is correlated with an increase of the series resistance and proves irreversible upon annealing. Electrical measurements indicate that it stems from reduced charge extraction due to the photodegradation of the organic-electrode interfaces. Furthermore, as the external quantum efficiency (EQE) spectrum is evenly lowered over the entire wavelength range, we could exclude major changes in the blend morphology or significant changes to optical properties of the active layer. Introducing a thin C60 layer leads to complete suppression of the FF decay over 1000 h, further proving that interface degradation dominates. Interestingly, similar improved lifetime over 1000 h was achieved by separate substitution of MoO3 for PEDOT:PSS.  相似文献   

4.
Photovoltaic devices based on Cu(In,Ga)Se2 with Cd-free buffer layer exhibit worse photovoltaic parameters and more pronounced transient behavior than standard CdS-buffered structures. In this work the electrical characteristics of the cells with ZnO buffer obtained by atomic layer deposition technique are compared to those of baseline CdS/CIGS cells. Persistent changes induced by light soaking and reverse-bias soaking in the current–voltage characteristics, admittance and DLTS spectra are analyzed. We discuss a role of buffer layer for the enhanced net doping in the interfacial region of absorber, Fermi-level pinning and conduction band offsets at the heterointerface for the photovoltaic performance of the cell.  相似文献   

5.
The charge transport and transient absorption properties of K27 dye-sensitized solar cell have been investigated. The current–voltage (IV) characteristics of the solar cell were analyzed by the thermionic emission theory. The ideality factor, barrier height and series resistance values of the solar cell were determined. The ideality factor higher than unity indicated the presence of non-ideal behavior in current–voltage characteristics at lower voltages. At the higher voltages, the charge transport mechanism for the solar cell is controlled by a space-charge limited current (SCLC) with an exponential distribution of traps. The built potential values are determined from capacitance–voltage plot and were found to be 0.14 and 0.58 V, respectively. The transient absorption data of K27 DSSC device suggest that the fast and slow phases are taking place. While the fast phase corresponds to regeneration of the dye cation by the iodide redox couple, the slow phase corresponds to the decay of long-lived I2/ TiO2 electron absorption. The best conversion efficiency for K27 DSSC was found to be 0.317% under 100 mW/cm2 (FF=0.584, Voc=480 mV, Isc=1.131 mA). The photocurrent results indicate that the photogeneration of charge carriers is a monophotonic process.  相似文献   

6.
Metal contacts to chemically etched Cu(InGa)(SeS)2 layers have been investigated using current–voltage and capacitance–voltage techniques. Oxidising chemicals enhance the Fermi level pinning at metal/Cu(InGa)(SeS)2 interfaces. The formation of a Schottky barrier at metal/p-Cu(InGa)(SeS)2 interface is dominated by Fermi level pinning at one of the four levels, 0.77±0.02, 0.84±0.02, 0.93±0.02 and 1.03±0.02 eV above the valence band maximum. These observed levels determined from current–voltage measurements show a good agreement with some of the previously published photoluminescence, deep level transient spectroscopy and photo acoustic spectroscopy observations. The capacitance–voltage measurements showed that this material has near ideal doping concentration of 1.0×1016 cm−3 for fabricating solar cell devices.  相似文献   

7.
Chlorinated intrinsic amorphous silicon films [a-Si:H(Cl)] and solar cell i-layers were fabricated using electron cyclotron resonance-assisted chemical vapor deposition (ECR-CVD) and SiH2Cl2 source gas. n–i–p solar cells deposited on ZnO–coated SnO2 substrates had poor photovoltaic performances despite the good electronic properties measured on the a-Si:H(Cl) films. Improved open–circuit voltage (Voc) of 0.84 V and fill factor (FF) of 54% were observed in n–i–p solar cells by providing an n/i buffer layer and by using Ga-doped ZnO coated glass substrates. However, the FF improvement was still rather poor, which is thought to originate from high interface recombination in the ECR deposited solar cells. The Voc and the FF showed much stable feature against light soaking.  相似文献   

8.
Zinc indium selenide (ZnIn2Se4) thin films have been prepared by spraying a mixture of an equimolar aqueous solution of zinc sulphate (ZnSO4), indium trichloride (InCl3), and selenourea (CH4N2Se), onto preheated fluorine-doped tin oxide (FTO)-coated glass substrates at optimized conditions of substrate temperature and a solution concentration. The photoelectrochemical (PEC) cell configuration of n-ZnIn2Se4/1 M (NaOH+Na2S+S)/C has been used for studying the current voltage (IV), spectral response, and capacitance voltage (CV) characteristics of the films. The PEC study shows that the ZnIn2Se4 thin films exhibited n-type conductivity. The junction quality factor in dark (nd) and light (nl), series and shunt resistance (Rs and Rsh), fill factor (FF) and efficiency (η) for the cell have been estimated. The measured (FF) and η of the cell are, respectively, found to be 0.435% and 1.47%.  相似文献   

9.
Copper-based ternary CuSb(S/Se)2 compound semiconductors are showing promise for ultrathin photovoltaic devices. The high absorption coefficient of these semiconductors makes them suitable for very thin absorber, where maximum absorption can be achieved in a photovoltaic device with only nanometers thick CuSb(S/Se)2 based thin films. The device structure under consideration consists of AZO/i-ZnO/n-CdS/absorber layer/back contact, as the constituent material layers. The device structure is simulated using one dimensional solar cell capacitance simulator (SCAPS 1D) under one sun illumination and considering flat band approximation for the back contact and CuSb(S/Se)2 interface. The optimized single junction device efficiencies are approximately 14% and approximately 10.18% with CuSbS2 and CuSbSe2 absorbers, respectively. Further, the impact of various material parameters such as thickness, acceptor concentration of bulk absorber layer, donor concentration of CdS buffer layer, and defects present at bulk absorber layer and at the buffer/absorber interface is discussed in correlation with the photovoltaic performance of the considered devices. The bandgap of CuSb(S/Se)2 reduces linearly with Se alloying, and their impact on device performance is quantified in terms of capacitance voltage (CV), capacitance frequency (Cf), and impedance spectra of the photovoltaic device.  相似文献   

10.
We have developed carbon added p-type microcrystalline silicon for the improvement of the open circuit voltage (Voc) of microcrystalline Si solar cells. Voc and fill factor (FF) shows the presence of optimum amount of carbon, [C]/[Si] of about 3.0%. Excess amount of carbon deteriorates the crystallinity of the p-layer accompanied by a decrease in Voc and FF.By using this carbon added p-layer, we have improved solar cell performance. Voc and FF are increased from 0.527 to 0.548 V and from 0.724 to 0.756 V, respectively, for a thickness of 1.3 μm. For a thickness of 2.5 μm, we obtained solar cell with an efficiency of 8.6%.  相似文献   

11.
Sulfurization of copper indium gallium diselenide (CIGS) thin films solar cell absorber has been used to enhance the open-circuit voltage of the device by increasing the band gap of the absorber near the interface. Sulfurization of a homogeneous co-evaporated Cu(InGa)Se2 thin film was studied in hydrogen sulfide and in a mixture of hydrogen sulfide and hydrogen selenide gases with the inclusion of oxygen. The structural and compositional properties of the absorber layer were investigated by XRD, EDS and AES. Sulfurization in hydrogen sulfide gas forms a fully converted sulfide layer at the top of the absorber layer, which in turn forms a barrier for the current collection. Sulfurization in a mixture of hydrogen sulfide and hydrogen selenide gases forms a wide band gap Cu(InGa)(SeS)2 layer at the surface, but at the same time there is Ga diffusion away from the surface with the inclusion of sulfur at the surface.  相似文献   

12.
Cu2ZnSnS4 (hereafter CZTS) thin films were successfully formed by vapor-phase sulfurization of precursors on a soda lime glass substrate (hereafter SLG) and a Mo-coated one (hereafter Mo-SLG). From the optical properties, we estimate the band-gap energy of this thin film as 1.45–1.6 eV which is quite close to the optimum value for a solar cell. By using this thin film as an absorber layer, we could fabricate a new type of thin film solar cell, which was composed of Al/ZnO:Al/CdS/CZTS/Mo-SLG. The best conversion efficiency achieved in our study was 2.62% and the highest open-circuit voltage was 735 mV. These device results are the best reported so far for CZTS.  相似文献   

13.
Surface sulfurization was developed as a technique for fabricating efficient ZnO : Al/CdS/graded Cu(In,Ga)(S,Se)2/ Mo/glass solar cells. Prior to the sulfurization, single-graded Cu(In,Ga)Se2 (CIGS) films were deposited by a multi-stage process. The sulfurization of CIGS films was carried out using a H2S---Ar mixture at elevated temperatures. The crystallographic and compositional properties of the absorber layers were investigated by XRD, SEM and AES analyses. After sulfurization, sulfur atoms were substituted for selenium atoms at the surface layer of CIGS films to form a Cu(In,Ga)(S,Se)2 absorber layer. The diffusion of sulfur depends strongly on the grain structure of CIGS film. The cell efficiency of the 8–11% range before sulfurization was improved dramatically to 14.3% with Voc = 528 mV, Jsc = 39.9 mA/cm2 and FF = 0.68 after the sulfurization process.  相似文献   

14.
Thickness dependence of microcrystalline silicon solar cell properties   总被引:1,自引:0,他引:1  
This paper addresses the performance of pin and nip solar cells with microcrystalline silicon (μc-Si:H) absorber layers of different thickness. Despite the reverse deposition sequence, the behavior of both types of solar cells is found to be similar. Thicker absorber layers yield higher short-circuit currents, which can be fully attributed to an enhanced optical absorption. Open-circuit voltage VOC and fill factor FF decrease with increasing thickness, showing limitations of the bulk material. As a result of these two contrary effects the efficiency η varies only weakly for absorber layers of 1 to 4 μm thickness, yielding maximum values up to 8.1 %. For a-Si:H/μc-Si:H stacked solar cells an initial efficiency of 12% has been obtained.  相似文献   

15.
Metal organic vapor-phase epitaxy (MOVPE) is used to prepare epitaxial reference films and solar cells based on CuGaSe2. Room temperature Hall measurements are performed on epitaxial CuGaSe2. Conductivities up to 0.7 (Ω cm)−1 were obtained. Highest mobilities of 270 cm2/Vs are observed for near stoichiometric slightly Ga-rich films. Net charge carrier concentration is higher in the Cu-rich grown films than in the Ga-rich films. Solar cells with epitaxial absorber are prepared that reach efficiencies of 3.3%. First polycrystalline solar cells are grown on Mo/glass at reduced substrate temperatures. Under AM1.5 illumination open-circuit voltages up to 740 mV and efficiencies of 2.0% are obtained.  相似文献   

16.
Open circuit voltage (Voc) and other photovoltaic parameters from fluorine tin oxide (FTO) P3OT/TiO2 composite solar cells have been investigated in comparison with those from the indium tin oxide (ITO) devices with the same device structure and fabrication process. From the experimental results, the performance of FTO-based devices is better than that of ITO devices in terms of Voc, short circuit current density (Jsc), and power conversion efficiency. The origin of Voc and the higher Voc of FTO can be explained and estimated by metal–insulator–metal model with a non-ohmic cathode contact.  相似文献   

17.
A new spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber was deposited on copper substrates using a reactive direct current magnetron sputtering system. A high solar absorptance (0.956) and a low emittance (0.07) were achieved by gradually decreasing the refractive index from the substrate to the surface. The tandem absorber was characterized using solar spectrum reflectometer and emissometer, X-ray photoelectron spectroscopy, phase-modulated spectroscopic ellipsometry, atomic force microscopy and micro-Raman spectroscopy techniques. In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) at different durations and temperatures. The tandem absorber deposited on copper substrate exhibited high solar selectivity in the order of 13–15 even after heat treatment in air up to 500 °C for 2 h. These tandem absorbers also exhibited high thermal stability (450 °C) in air for longer durations (116 h). The onset of oxidation for the tandem absorber deposited on silicon substrates was 650 °C, indicating a high oxidation resistance. The results of the present study indicate the importance of NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar selective applications.  相似文献   

18.
The CuInTe2 thin films is one of the most attractive semiconductors for solar cells applications, since its direct band gap energy (Eg≈1 eV) is suitable as an absorber in photovoltaic conversion. In this letter the CuInTe2 thin films are prepared by flash evaporation technique. X-ray diffraction measurements on the as-deposited CuInTe2 film showed that these films consist mainly of the chalcopyrite phase. The junction formation in the n-CdS/p-CuInTe2 cell has been investigated using current–voltage (IV) and capacitance-voltage (CV) measurements.  相似文献   

19.
The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ∼5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at ∼4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.  相似文献   

20.
Zn3P2 semiconductor thin films were prepared by electrodeposition technique form aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry technique. Crystal structure, morphology and composition of as deposited and annealed Zn3P2 thin films grown on SnO2/glass substrates were determined by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. X-ray diffraction data indicated the formation of Zn3P2 as the predominant phase for both as-deposited and annealed films. The compositions of the deposited films were controlled by the bath temperature, deposition potential and Zn/P ratio in the solution.The dark current–voltage measurements of SnO2/Zn3P2/C devices indicated a rectifying behavior and a reverse saturation current density of 1.7×10−7 A/cm2, which is in good accordance with that obtained from films prepared using vacuum technique. Also, the capacitance–voltage measurements showed that the number of interface states and the built in potential are in the order of 5×10−9 cm−3 and 0.85 V, respectively. These preliminary results for Zn3P2 thin films reveal that, this semiconductor material can be used for solar cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号