首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
何肖飞  胡成飞  徐乐  王毛球  时捷 《钢铁》2020,55(11):112-117
 为了获得高品质齿轮钢中更加确切的夹杂物信息,并评价齿轮钢中的夹杂物,选择高品质Mn-Cr系齿轮钢为研究对象,分别利用评级法、电镜检验法、极值法等对钢中夹杂物进行了研究。结果发现,评级法、电镜检验法获得的氧化物夹杂尺寸分别在16、23 μm以下,尺寸相对较小。而通过扫描电镜大面积检测分析,试验钢中最大氧化物夹杂等效尺寸达到34.2 μm。进一步利用Gumbel统计极值法对试验钢中最大夹杂物预测,在99.9%概率条件下,试验钢中最大夹杂物尺寸为62.1 μm。99.9%的概率条件相当于约100 000 mm2检测面积,对于工业及常规科研检测分析已足够充分。  相似文献   

2.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3 ≤ 37%、MgO 10%、(% CaO+% MgO)/% SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO·Al2O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按\  相似文献   

3.
随着钢洁净度的提高,钢中大尺寸的非金属夹杂物出现几率很低,常规的夹杂物检测方法很难捕捉到,但这些大尺寸夹杂物严重影响产品的质量。本文介绍了采用极值统计方法推测钢中最大夹杂物尺寸,其原理是确定子样个数,测出子样夹杂物最大粒度(子样夹杂物最大粒度呈极值分布,其最大值则服从特定的Gumbel分布函数),根据计算出的累积概率密度、标准量和子样的最大夹杂粒度,推测试样最大夹杂物粒度值。采用该方法研究了低碳铝脱氧钢铸坯中夹杂物,将推测结果与其他分析方法进行了比较,结果表明,极值统计法可以作为估计钢中最大夹杂物粒度的一  相似文献   

4.
为改善20CrNiMoH齿轮钢的质量,减少钢中夹杂物含量,采用大样电解法提取钢中大型夹杂物,测定其含量,并分析其粒度及成因,对该钢种生产工艺提供改进依据.  相似文献   

5.
为了探测镁对20CrMo齿轮钢中夹杂物的影响,利用实验室高温电阻炉对齿轮钢进行加镁冶炼试验,结合金相显微镜和扫描电子显微镜研究了不同镁含量对齿轮钢中夹杂物形貌及成分的影响,并运用热力学理论研究了不同镁含量对钢中夹杂物成分变化的机理。试验结果表明,试验钢中的夹杂物密度在40~65个/mm~2。当镁含量为8×10~(-6)时,夹杂物等效直径由2.93μm增至3.28μm;当钢中的镁含量为(21~38)×10~(-6)时,夹杂物等效直径在2.64~2.67μm。随着镁含量的增加,单独MnS的百分率从26.3%降至2.2%,氧化物的比例从44.8%增至84.8%。热力学表明,镁含量在(2.63~7.98)×10~(-6)就可完全改质钢中Al_2O_3为镁铝尖晶石;当镁含量大于7.98×10~(-6)时,钢中就会形成MgO。综上可得,镁含量在8×10~(-6)左右时复合夹杂物比例较大,氧化物夹杂比例较低,可提高钢的性能。  相似文献   

6.
分析了本钢采用转炉→炉外精炼(LF+RH)→矩形坯连铸工艺流程生产齿轮钢控制钢中T[O]含量的工艺流程,并提出转炉复吹、精炼LF白渣操作、RH真空循环及钙处理是降低钢中T[O]含量的关键。  相似文献   

7.
抚钢一炼钢厂生产的汽车齿轮钢8620RH圆材中氧化物夹杂(B类夹杂物)超标,用扫描电镜对夹杂物的化学成分进行分析,结果表明:8620RH钢中夹杂物分为2种,即以镁铝尖晶石或Al_2O_3为主的脱氧产物或二次氧化产物和由卷渣所致的复合成分渣类夹杂物。同时,分析了2类夹杂物的来源,并针对性地采取了改善措施,使汽车齿轮钢8620RH中的B类夹杂物合格率由改善前的96.4%提高至现阶段的99.7%。  相似文献   

8.
刘昭 《特殊钢》2009,30(1):48-49
本钢特殊钢厂20CrMnTiH齿轮钢采用EAF(出钢量45t)-LF-CC工艺流程生产。通过控制电弧炉脱碳量≥0.25%C,保证脱碳速度0.02%C/min,出钢前加0.2%锰铁,使终点碳≥0.10%;电弧炉出钢加铝铁或硅钡钙铝3.0 kg/t进行沉淀脱氧,LF加入3~5 kg/t脱氧剂扩散脱氧,使(FeO)≤0.5%,钢包钢水浇铸前在0.1~0.3 MPa氩气压力镇静吹氩≥15min,使20CrMnTiH钢的夹杂物一次合格率从88.35%提高到92.49%。  相似文献   

9.
稀土夹杂物在钢中的分布   总被引:1,自引:0,他引:1  
利用放射性同位素铈研究稀土夹杂物在钢中的分布。稀土夹杂物的钢锭中呈台锥体分布,在1.25t钢锭中分布于62-98%处,在11.4t钢锭中分布于70-91%处  相似文献   

10.
陈本文  栗红  常桂华  王勇  杨亮 《炼钢》2012,28(1):8-10
介绍了利用PDA光谱仪开发的光谱分析夹杂物技术,利用该技术分析了IF钢冷轧板合格品罐次和由夹杂引起的废品罐次精炼过程中RH终点、中间包浇铸中期钢液中Al2O3夹杂物含量,初步提出了IF钢精炼过程中夹杂物控制技术指标:RH终点夹杂物质量分数控制在0.004 5%以下、中间包夹杂物质量分数0.003 0%以下。于2009年将该技术应用于IF钢实际生产过程中,并与其它工艺相结合,大大降低了IF钢冷轧板由夹杂引起的废品率。  相似文献   

11.
杨光维  陈兆平  柳向椿 《炼钢》2019,35(1):61-65
非钙处理齿轮钢钢中夹杂物主要是高熔点夹杂物,在连铸过程容易堵塞水口,导致连浇炉数偏低,成品容易出现大型B类夹杂物。通过优化合金种类及加入方式、精炼炉渣成分、VD真空处理及中间包保护浇铸,连浇炉数由不超过2炉提高到6炉,成品B类夹杂物由3. 0级以上降低至0. 5级以内。  相似文献   

12.
为了研究齿轮钢脱氧及夹杂物控制,结合工厂试验以及热力学计算,分析了在不同冶炼时刻,含硫齿轮钢的复合脱氧产物。研究结果表明,在冶炼过程中,随着脱氧反应的进行以及脱氧平衡的移动,钢中溶解氧含量不断降低,夹杂物组成由纯Al_2O_3夹杂转变为Al_2O_3-MgO-CaO-Ti_2O_3-CaS复合夹杂。纯铁液的脱氧热力学和实际钢液存在较大差距,不能采用纯铁液的脱氧热力学指导实际生产。  相似文献   

13.
白旭旭  杨树峰  刘威  李京社  梁雪 《钢铁》2019,54(12):35-41
 为了研究碲处理对钢中MnS夹杂物形貌的影响,利用SEM-EDS扫描电镜,研究了20CrMnTi钢中添加高纯碲粉后MnS夹杂物的改性效果。试验结果表明,碲处理使钢中夹杂物的平均长宽比由3.17降至1.83,球化效果较为明显;当碲硫比控制在0.33时,不同硫含量的钢中夹杂物形貌有明显差异,硫质量分数为0.21%的钢中,形成了MnS镶嵌在碲化物中的大型夹杂,而在硫质量分数为0.11%的钢中,形成了碲化物包裹MnS的复合夹杂;当碲硫比为3.21时,发现钢中出现了单独存在的高碲相,MnS外层的碲化物层也较厚,改性率仅为8.75%,这表明高碲硫比并不能提高硫化物改性的数量。  相似文献   

14.
摘要:20MnCr5齿轮钢通常有较好的疲劳性能及切削性能,而钢中夹杂物是影响这些性能的重要因素。为了研究镁对20MnCr5齿轮钢中夹杂物的改质行为和规律,开展了相应的工业实验,采用金相显微镜、扫描电镜以及非水溶液电解腐蚀技术对铸坯和轧材进行了分析。结果表明:镁处理后,钢液更加洁净,夹杂物数量变少,尺寸也变小;以Al2O3为核心外围包裹着MnS的复合夹杂,转变为以MgO·Al2O3为核心外围包裹着MnS的复合夹杂物,且复合夹杂物的占比从4.2%提高到8.3%。对轧材进行分析,发现镁的加入使20MnCr5轧材中长条状的硫化物更加短小弥散,硫化物的细系评级从2.5级显著降低到1.5级;由于复合夹杂物内部硬质MgO·Al2O3核心抑制了轧制过程中夹杂物的变形,使夹杂物保持球形或椭球形。  相似文献   

15.
钢中稳定夹杂物分量的测定   总被引:1,自引:0,他引:1  
提出了采用分光光度和原子吸收相结合的技术测量钢中稳定夹杂物分量SiO2、Al2O3、FeO、MnO的方法。  相似文献   

16.
为明确不同脱氧剂加入顺序对钢中夹杂物的影响,对夹杂物的形成进行了热力学分析,并在1 873K下,在MoSi2电阻炉上用φ70 mm×100 mm MgO坩埚开展了2炉低碳合金钢A冶炼实验.热力学计算表明,Si-Mn脱氧主要形成SiO2夹杂物及少量2MnO· SiO2复合化合物,A1-Si脱氧主要形成Al2O3夹杂物,实验结果与热力学计算相互吻合.实验结果表明,先采用Si-Mn脱氧的1号工艺与先采用Al脱氧的2号工艺相比,夹杂物尺寸和面积百分比均较低.1号工艺终点夹杂物总数为168个/μm2,小于1.5φm的夹杂物占70%以上,夹杂物平均直径为1.2um.先弱脱氧后强脱氧的工艺更利于夹杂物的控制.  相似文献   

17.
齿轮是机械传动的关键结构部件,为了改善齿轮的服役性能,提高疲劳寿命,需要清楚齿轮钢中的夹杂物类型、数量、尺寸、分布。采用夹杂物自动扫描仪、氧含量分析手段、扫描电镜对齿轮钢锻件不同位置进行夹杂物评估。结果表明:铸件中心位置TO质量分数较高,为10×10-6,对应小尺寸夹杂物数量较多,而大尺寸夹杂物在关键区域的分布较多。钢中氧化物夹杂主要为Al2O3、Al2O3复合类的尖晶石和钙铝酸盐复合夹杂物,且尺寸较大,分布不均匀,对齿轮钢关键区域的影响较大。钢中硫化物夹杂分布均匀,尺寸较小,热力学计算表明,该类夹杂在凝固过程中凝固率g>0.44时,MnS开始析出,通过控制硫化物夹杂析出及分布有助于改善齿轮钢质量。  相似文献   

18.
杨勇  刘浏  崔京玉 《钢铁》2010,45(10)
分析研究了转炉生产20CrMnTi齿轮钢中夹杂物的种类、组成、数量和形态,发现钢中存在以Al2O3为主的氧化物、-αMnS、(Ti0.952Cr0.047)(C0.551N0.501)、Ti2CS和AlN等夹杂物;严格控制钢中[T.O]和[S]含量,可获得较低的夹杂物总量水平。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号