首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Gleeble-3500热模拟机进行圆柱体压缩试验,研究了新型铝青铜合金在变形温度为650~950℃、应变速率为0.01~5s-1、真应变为0~0.8条件下的流变应力特征。结果表明:应变速率为0.01和5s-1时,铝青铜合金首先出现加工硬化,流变应力达到峰值后趋于平稳,表现出动态回复的特征;应变速率为0.1和1s-1时,合金发生了局部动态再结晶;可用Zener-Hollomon参数的双曲正弦形式来描述新型铝青铜合金热压缩变形时的流变应力行为。  相似文献   

2.
KFC铜合金热压缩变形流变应力   总被引:12,自引:4,他引:12  
在Gleeble-1500热模拟机上对KFC铜合金在应变速率为0.01~10s^-1、变形温度为650~850℃条件下的流变应力进行了研究。结果表明:在实验范围内,KFC铜合金热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的双曲对数函数能较好的描述KFC铜合金高温变形时的流变应力行为;所获得的应变速率ε解析表达式中,参数InA1、n和α值分别为31.1s^-1、6.08和0.017MPa^-1;其热变形激活能Q为288.79kJ/mol;定量描述了溶质原子对不同纯度铜热变形激活能的影响。并建立了相应关系式。  相似文献   

3.
高强可焊2195铝-锂合金热压缩变形的流变应力   总被引:3,自引:2,他引:3  
在Gleeble-1500热模拟实验机上,采用高温等温压缩,0.001~10 s-1,变形温度为360~520℃,对2195铝-锂合金在高温压缩变形中的流变应力行为进行了研究,分析了其高温变形的物理本质.结果表明:在应变速率为1 s-1(变形温度为520℃)和应变速率为0.1、0.01、0.001 s-1(变形温度为360~520℃)时,2195铝-锂合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征;在其它变形条件下存在较为明显的稳态流变特征;可采用Zener-Hollomon参数的双曲正弦函数来描述2195铝-锂合金高温变形时的流变应力行为;在获得的流变应力σ解析表达式中,A、α和n值分别为2.569×1017 s-1、0.012 48 MPa-1和5.94;热变形激活能Q为250.45 kJ/mol.  相似文献   

4.
在变形温度为653K~773 K,应变速率为0.001s-1~10s-1的条件下,采用Gleeble——1500热模拟试验机对含钪Al-Cu-Li-Zr合金的热变形行为进行了研究。结果表明:含钪Al-Cu-Li-Zr合金流变应力随变形温度升高和应变速率的降低而减小;变形初期,应力值随应变的增加迅速提高,显示出明显的加工硬化效应。当应力值达到峰值后,随着变形增加,流变应力逐步降低,合金出现明显的软化现象。根据流变应力本构方程及利用作图法和线性回归方法求解得出各参数数值,得出流变峰值应力方程,利用此方程预测的流变峰值应力与实验结果吻合得较好。  相似文献   

5.
Al-Zn-Mg-Cu合金热压缩流变应力行为及组织演变   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热力模拟试验机进行了Al-Zn-Mg-Cu合金的等温压缩实验,变形温度为250~450℃,应变速率为0.001~0.1 s-1,变形量为10%~50%,获得了热压缩变形的真应力-真应变曲线.应力-应变曲线基本呈现回复型曲线特征,计算得出其应力指数为4.60,热变形激活能为186.70 kJ·mol-1;综合分析了变形温度、应变速率和变形量对组织演变的影响规律,确定了Al-Zn-Mg-Cu合金的锻造工艺参数为:锻造温度区间420350℃,应变速率0.01~0.1 s-1,变形量>30%.  相似文献   

6.
采用Gleeble-1500D热模拟机高温等温压缩试验,研究了新型反应堆中子吸收材料-碳化硼-铝硅复合材料在应变速率为0.1~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:该材料在试验条件下压缩变形时均存在稳态流变特征,应变速率和变形温度强烈影响试验材料流变应力;该流变应力随应变速率的提高而增大,随变形温度的升高而降低;采用Zener-Hollomon参数的双曲正弦函数描述该复合材料高温变形的峰值流变应力,获得峰值流变应力解析式,其热变形激活能为236.248 kJ/mol.  相似文献   

7.
通过在Gleeble-1500动态热模拟机上进行高温等温压缩试验,研究了BFe30—1—1合金在高温塑性变形过程中的流变应力行为。试验温度为800-950℃,应变速率为0.1-20s^-1.研究结果表明:BFe30-1-1合金的流变应力随变形温度的增加而减小,随应变速率的增大而增大;应变速率越大,流变应力下降越明显;获得了采用Zener-Hollomon参数来描述的BFe30—1—1合金高温变形的流变应力方程,计算获得该合金变形激活能Q为177.62kJ/mol。  相似文献   

8.
抗蠕变Zn-Cu-Cr合金的热压缩流变应力行为   总被引:1,自引:0,他引:1  
通过Gleeble1500D热模拟机的热压缩实验,研究了Zn-8Cu-0.2Cr合金在应变速率为0.01/s~10/s、温度为230℃~380℃条件下的流变应力行为;采用双曲正弦模型求解材料常数,并采用非线性回归,建立了真应变ε与Q、lnA、n和α之间的关系。结果表明,变形条件对流变应力具有显著的影响,流变应力随应变速率的增大和温度的升高而减小;Q、lnA、n和α可表示为真应变ε的5次指数函数,利用该函数,可以计算任意变形条件下的流变应力,其平均误差为5.9%,该模型能准确反映Zn-8Cu-0.2Cr合金的高温变形力学行为。  相似文献   

9.
Inconel 751合金热压缩变形条件下的流变应力模型   总被引:4,自引:0,他引:4  
采用Gleeblc-1500热模拟试验机对Inconel751合金在应变速率为0.005s-1~20.0s-1,变形温度为980℃~1200℃条件下的流变应力进行了研究。结果表明,在试验范围内,Inconel751合金热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的双曲对数函数能较好的描述Inconel751合金的流变行为;得到了回归的峰值应力表达式和热变形激活能表达式。  相似文献   

10.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

11.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

12.
采用圆柱体在Gleeble-1500热模拟机上进行热压缩实验,对一种新型水平连铸Al-Mn-Si-X合金热变形流变应力行为进行研究,变形温度为350℃~500℃,应变速率为0.01s-1~10s-1。结果表明,流变应力先随应变的增大而增大,达到峰值后则逐渐减小并趋于平稳,表现出流变软化特征;而应力峰值是随着温度的升高而减小,随应变速率的增大而增大。应用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金热压缩变形流变应力,其变形激活能Q=159.2kJ/mol。  相似文献   

13.
新型含Zr超高强Al-Zn-Mg-Cu-Zr合金的高温压缩流变行为   总被引:1,自引:0,他引:1  
采用等温压缩试验法,研究了新型含Zr超高强Al-Zn-Mg-Cu-Zr合金在变形温度为300~450℃和应变速率为0.001~1s-1条件下的流变变形行为,获得了等温恒速单轴方向热压缩变形过程的真应力-真应变曲线,建立了流变应力本构方程。结果表明:在实验范围内,该合金高温压缩时均存在稳态流变特征且属于正应变速率敏感材料;在较低温度和较高应变速率条件下,流变应力除了与应变速率、变形温度有关以外,还与变形量有关;可用包含Arrhenius项的Zener-Hollomon参数描述该合金的高温压缩流变行为,基于热模拟试验提供的真应力-真应变数据,可得出流变应力σ解析表达式中A、α和n分别为2.09×106s-1、0.019MPa-1和5.075,其热变形激活能Q为112.66kJ/mol。  相似文献   

14.
含Sc超高强Al-Zn-Cu-Mg-Sc-Zr合金的热压缩变形流变应力   总被引:1,自引:0,他引:1  
采用Gleeblel500热模拟机在应变速率为0.001~10/s、温度为380~470℃、真应变为0~0.7的条件下,研究了实验合金的流变应力行为.结果表明:该合金热压缩变形时存在较明显的稳态流变特征,当ε<1/s时,流变应力开始随应变增加而增加,达到峰值后趋于平稳,呈动态回复特征;当ε≥1/s时,流变应力均出现了明显的峰值应力,为连续动态再结晶特征.带Zener-Hollomon参数的双曲正弦函数可描述合金高温变形时的流变应力,σ解析表达式中A、α和n值分别为5.952×108/s、0.021 MPa-1和5.397:热变形激活能Q为157.9kJ/mol.  相似文献   

15.
Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Al-Mn-Mg-Cu-Ni合金进行热压缩试验,分析合金的流变应力与应变速率和变形温度之间的关系,计算高温变形时的变形激活能,并研究合金在变形过程中的显微组织。结果表明:Al-Mn-Mg-Cu-Ni合金在本实验条件下具有正的应变速率敏感性;流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为209.84kJ/mol。随着热变形温度的升高和应变速率的减小,合金中的主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

16.
《塑性工程学报》2015,(4):133-140
采用Gleebe-1500D热压缩模拟试验机在变形温度350℃~500℃、应变速率0.001s-1~5s-1的条件下对Al-17.5Si-4Cu-0.5Mg合金进行热压缩实验,研究该合金在热塑性变形条件下的流变应力行为,并建立热变形时的本构方程。研究结果表明,随着应变速率的增加、变形温度的降低,合金的流变应力增加,为正应变速率敏感性材料;采用Znenr-Hollomon参数双曲正弦形式对合金高温塑性变形时的流变应力行为进行描述,流变应力σ解析表达式中材料常数A,σ,n分别为1.81×1019s-1,0.024MPa-1和6.37,合金的平均热变形激活能Q为308.61kJ·mol-1。  相似文献   

17.
Mg-Gd-Y-Zr镁合金热压缩流变应力的研究   总被引:2,自引:0,他引:2  
采用恒应变速率高温压缩模拟实验,对Mg-Gd-Y-Zr镁合金在应变速率为0.001~1.0s^-1、变形温度为150~500℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了峰值流变应力方程。结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下,合金的流变应力随温度的升高而降低;在350-500℃,0.001~1.s^-1的变形条件下,变形激活能和应力指数分别为2215kJ/mol和368;流变应力方程计算出的峰值应力与真实值基本吻合。  相似文献   

18.
2519铝合金热压缩变形流变应力行为   总被引:19,自引:6,他引:13  
在 Gleeble- 15 0 0热模拟机上对 2 5 19铝合金进行等温热压缩实验 ,变形温度为 30 0~ 5 0 0℃ ,应变速率为0 .0 5~ 2 5 s- 1 ,研究其热压缩变形的流变应力行为。结果表明 :2 5 19铝合金真应力 -应变曲线在低应变速率 (ε<2 5 s- 1 )条件下 ,流变应力开始随应变增加而增大 ,达到峰值后趋于平稳 ,表现出动态回复特征 ;而在高应变速率 (ε≥ 2 5 s- 1 )条件下 ,应力出现锯齿波动达到峰值后逐渐下降 ,表现出不连续再结晶特征。在用 Arrhenius方程描述 2 5 19铝合金热变形行为时 ,其变形激活能 Q为 16 7.81k J/ mol  相似文献   

19.
H65黄铜合金热变形流变应力特征研究   总被引:3,自引:0,他引:3  
为实现H65黄铜合金连续挤压的数值模拟和合理制定其热成形工艺参数,采用Gleeble-1500热模拟实验机对该材料在热变形条件下的流变应力特征进行了研究。结果表明,在实验范围内,H65黄铜合金热压缩变形时发生明显的动态再结晶;用Arrhenius方程的指数形式能较好地描述H65黄铜合金高温变形时的流变应力行为;分区间求得热变形激活能Q,并分段建立了H65黄铜合金的本构方程。  相似文献   

20.
AZ80镁合金热变形流变应力研究   总被引:1,自引:1,他引:0  
在应变速率为0.001s-1~10s-1,变形温度为200℃~400℃条件下,在Gleeble-3800热模拟机上对AZ80合金的流变应力进行了研究。结果表明,AZ80合金的流变应力强烈地受变形温度的影响,当变形温度低于300℃时,其峰值流变应力呈现幂指数关系;当变形温度高于300℃时,其峰值流变应力呈现指数关系。在该文实验条件下,AZ80合金热变形应力指数n=8.43,热变形激活能Q=165.83kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号