首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Setsuko Isaji  Masaru Matsuo 《Polymer》2009,50(4):1046-1053
Electrical properties of polyethylene and carbon nanotube composite films were investigated, when the composite films were set in heating box or under electric field at constant voltage. The composite films were prepared by gelation/crystallization from dilute solution. The mixture of ultra-high molecular weight polyethylene (UHMWPE) and branched low molecular weight polyethylene (LMWPE) was used as matrix, and multi-walled carbon nanotubes (MWNTs) were used as fillers. The filler content was chosen to be 10 wt% (ca. 5.25 vol%) which is a relatively higher loading than the percolation threshold to ensure to act as heating element in plane heater of composite film. The focus was concentrated on the temperature dependences of electric conductivity by external heating and by exothermic effect concerning self-temperature-control heating properties which were measured for the three kinds of UHMWPE-LMWPE composites with the same content of MWNTs in the composites. When a certain voltage was applied to the composite, the surface temperature of film reaches the equilibrium value within less than 100 s. The maximum surface temperature as the equilibrium state of the resultant composite film can be easily controlled by adjusting the composite ratio represented as UHMWPE/LMWPE. The high efficiency of heating and wide adjustability of stable temperature suggested its good application in high efficient plane heater.  相似文献   

2.
Umar Khan  Yurii K. Gun’ko 《Carbon》2010,48(10):2825-1077
We have prepared mixed dispersions of singlewalled nanotubes and nano-graphite/graphene in the solvent N-methyl pyrrolidone. This allows the deposition of hybrid films by vacuum filtration. Scanning electron microscopy shows the components to be well mixed with little sign of phase separation. Although dominated by nano-graphite, Raman spectroscopy shows the presence of some graphene flakes with <5 layers. Mechanical measurements show the hybrids to be stronger and stiffer than nanotube or graphene-only films, reaching strengths and stiffnesses of 38 MPa and 4.8 GPa, respectively for the sample with 20 wt% graphene. In addition the hybrid films were more electrically conductive than the nanotube-only or graphitic films reaching a DC conductivity of 2 × 104 S/m for the 70 wt% nano-graphite/graphene sample.  相似文献   

3.
Ling Zhang  Tao Tao  Chunzhong Li 《Polymer》2009,50(15):3835-3840
Multi-walled carbon nanotubes (MWNTs) periodically decorated with polyethylene (PE) lamellar crystals had been prepared using the non-isothermal crystallization method. The morphology and structure of polyethylene attached to MWNTs were investigated by means of transmission electron microscopy (TEM). A nano-hybrid shish-kebab (NHSK) structure was observed wherein the average diameter of PE lamellar crystals varies from 30 to 150 nm with average periodicity of 35-80 nm. The TEM images of samples obtained at 125 °C showed that MWNTs were first wrapped by a homogeneous coating of PE with few subglobules, then PE chains epitaxially grew from the subglobule and formed lamellar crystals perpendicular to the carbon nanotube axis. It is suggested that the homogeneous coating plays a key role in the formation of NHSK structures. And the formation process was discussed based on the intermediate state images of samples obtained at 95 °C. While NHSK structures cannot be formed by using polypropylene (PP). This may attribute to the zigzagged conformation of PP chains on the surface of MWNTs, which hinders the formation of homogeneous coating of PP on it.  相似文献   

4.
It is well accepted that due to epitaxy matching, carbon nanotubes are good nucleating agent for linear polyethylene. We demonstrate that not only in the quiescent conditions but also at the relatively low shear rates the presence of single-walled carbon nanotube (SWCNT) accelerates the crystallization kinetics of polyethylene (PE). The influence of SWCNTs on the crystallization kinetics in the quiescent condition is followed with the help of rheological and differential scanning calorimetry studies. The influence of flow on the stretch of the polymer chain is probed using time-resolved small-angle X-ray scattering (SAXS) and is verified with the Deborah number. SAXS data indicates that the strong shearing conditions (shear rate > 50/s for 1 s) are requisite to form shish-kebab structure in the neat polymer. However, for the low shear (shear rate < 50/s for 1 s), the shish-kebab structure that arises due to chain orientation is enhanced in the presence of SWCNTs. The development of oriented structures in SWCNT/PE composites and their absence in the neat polymer under low shear rate indicates that the presence of SWCNTs plays a significant role in the chain orientation. Overall, the results manifest the influence of SWCNTs on chain relaxation of the polymer.  相似文献   

5.
Uniform, vertically aligned multiwalled carbon nanotube arrays (VACNTs) were grown on glassy carbon-like thin films by thermal chemical vapour deposition (CVD). Thin (5 nm) aluminum and iron catalyst layers were pre-deposited by evaporation on the carbon substrates and VACNTs were grown at 750 °C by water-assisted CVD using ethylene as the carbon source. The aluminum layer was shown to be essential for aligned nanotube growth. VACNT arrays adhered strongly to the carbon film with low contact resistance between the VACNTs and the substrate. The VACNT arrays grown directly on the planar conducting carbon substrate have attractive properties for use as electrodes. Excellent voltammetric characteristics are demonstrated after insulating the arrays with a dielectric material.  相似文献   

6.
The use of self-organized TiO2 nanotube arrays electrochemically grown onto Si is investigated for the fabrication of an alternative electrode dedicated to on-chip Li-ion 2D microbatteries. Discharge/charge curves and cycling performance are studied in lithium-anode electrochemical test cells for both amorphous and crystalline titania nanotubes. At 5 μA cm−2 amorphous TiO2 nanotube layers onto Si deliver a maximum areal capacity of 89 μAh cm−2 in the first reversible discharge and 56 μAh cm−2 over 50 cycles. We demonstrate that these nanostructured thin film electrodes showing such electrochemical performances are compatible with IC technology.  相似文献   

7.
Photoelectrodes consisting of TiO2 nanotube layers with different thicknesses (0.5 μm, 1.7 μm, 3 μm, 6 μm, 9 μm, and 18 μm) were prepared by anodization of titanium substrates and subsequent surface modification by a heat treatment at 400 °C in the presence of urea pyrolysis products. In contrast to unmodified TiO2 nanotubes, the modified photoelectrodes exhibit photocurrents under visible light irradiation down to 750 nm. Photocurrent transients indicate enhanced recombination unless a suitable hole-scavenger, like iodide, is present since the photogenerated holes do not oxidize water efficiently. In the visible light the photoconversion efficiency increases significantly with nanotube length. The maximum incident photon-to-current efficiency (IPCE) was observed for tubes with the length of 6-9 μm (IPCE ∼4.5% and 1.4% at 450 nm and 550 nm, respectively) and the photocurrent enhancement with increasing tube length is found to be stronger at longer irradiations wavelengths.  相似文献   

8.
Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH3)6+3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 × 10−3 cm s−1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.  相似文献   

9.
Qiang Zhang 《Carbon》2010,48(4):1196-9671
A parametric study investigating the impacts of loading amount of active phase, growth temperature, H2 reduction, space velocity, and apparent gas velocity on the intercalated growth of vertically aligned carbon nanotube (CNT) arrays among lamellar catalyst was performed. A series of Fe/Mo/vermiculite catalysts with Fe/vermiculite ratio of 0.0075-0.300 were tested. Metal particles were dispersed among the layers of vermiculite after H2 reduction. Uniform catalyst particles, with a size of 10-20 nm and a density of 8.5 × 1014 m−2, were formed among the vermiculite layers at 650 °C. CNTs with high density synchronously grew into arrays among the vermiculites. With the increasing growth temperature, the alignment of CNTs intercalated among vermiculites became worse. Moreover, intercalated CNTs were synthesized among vermiculite layers in various flow regimes. The as-grown particles were with a size of 1-2 mm when the fluidized bed reactor was operated in particulate fluidization and bubbling fluidization, while the size of the as-grown products decreased obviously when they grown in the turbulent fluidized bed. Based on the understanding of the various parameters investigated, 3.0 kg/h of CNT arrays were mass produced in a pilot plant fluidized bed reactor.  相似文献   

10.
Han Gi Chae 《Polymer》2007,48(13):3781-3789
Gel spun polyacrylonitrile (PAN) and PAN/single wall carbon nanotube (SWNT) composite fibers have been stabilized in air and subsequently carbonized in argon at 1100 °C. Differential scanning calorimetry (DSC) and infrared spectroscopy suggests that the presence of single wall carbon nanotube affects PAN stabilization. Carbonized PAN/SWNT fibers exhibited 10-30 nm diameter fibrils embedded in brittle carbon matrix, while the control PAN carbonized under the same conditions exhibited brittle fracture with no fibrils. High resolution transmission electron microscopy and Raman spectroscopy suggest the existence of well developed graphitic regions in carbonized PAN/SWNT and mostly disordered carbon in carbonized PAN. Tensile modulus and strength of the carbonized fibers were as high as 250 N/tex and 1.8 N/tex for the composite fibers and 168 N/tex and 1.1 N/tex for the control PAN based carbon fibers, respectively. The addition of 1 wt% carbon nanotubes enhanced the carbon fiber modulus by 49% and strength by 64%.  相似文献   

11.
The electrochemical performance of carbon nanotube array (CNTA) and entangled carbon nanotube (ECNT) electrodes are studied as anodes for Li-ion batteries. CNTA anodes display higher capacity (373 mAh g−1) and much better rate and cycle performances than ECNT anodes. The performance of CNTA electrode shows length dependencies, i.e., shorter CNTA electrodes present higher specific capacity and better rate performance. The energy storage characteristics of CNTA electrodes are discussed on the basis of experimental results of SEM, TEM, and Raman spectra. The inner graphene layers of CNTs in CNTA electrode, which can form electron conductive paths and ensure a high conductivity, are retained during Li-ion insertion/extraction. These mechanically robust inner graphene layers can avoid the loss of outer active materials during Li-ion insertion/extraction, which, in turn, results in a good cycle performance.  相似文献   

12.
From mixed (anatase and rutile) bulk particles, anatase TiO2 nanotubes are synthesized in this study by an alkaline hydrothermal reaction and a consequent annealing at 300-400 °C. The physical and electrochemical properties of the TiO2 nanotube are investigated for use as an anode active material for lithium-ion batteries. Upon the first discharge-charge sweep and simultaneous impedance measurements at local potentials, this study shows that interfacial resistance decreases significantly when passing lithium ions through a solid electrolyte interface layer at the lithium insertion/deinsertion plateaus of 1.75/2.0 V, corresponding to the redox potentials of anatase TiO2 nanotubes. For an anatase TiO2 nanotube containing minor TiO2(B) phase obtained after annealing at 300 °C, the high-rate capability can be strongly enhanced by an isotropic dispersion of TiO2 nanotubes to yield a discharge capacity higher than 150 mAh g−1, even upon 100 cycles of 10 C-rate discharge-charge operations. This is suitable for use as a high-power anode material for lithium-ion batteries.  相似文献   

13.
The electrical conductivities (σ) of nanocomposites of single-walled carbon nanotubes (SWCNTs) and high density polyethylene (HDPE) have been studied for a large number of nanocomposites prepared in a SWCNT concentration range between 0.02 and 8 wt%. The values of σ obey a percolation power law with an SWCNT concentration threshold, pc = 0.13 wt%, the lowest yet obtained for any kind of carbon-polyethylene nanocomposites. Improved electrical conductivities attest to an effective dispersion of SWCNT in the polyethylene matrix, enabled by the fast quenching crystallization process used in the preparation of these nanocomposites. Characterization by scanning electron microscopy (SEM) and Raman spectroscopy consistently points to a uniform dispersion of separate small SWCNT bundles at concentrations near pc and increased nanotube clustering at higher concentrations. Near pc, high activation energies and geometries of long isolated rods suggest that electron transport occurs by activated electron hopping between nanotubes that are close to each other but still geometrically separate. The degree of SWCNT clustering given by Raman spectroscopy and the barrier energy for electrical conductivity are highly correlated. The nanotubes act as nucleants in the crystallization of the polyethylene matrix, and change the type of supermolecular aggregates from spherulites to axialitic-like objects. The size of crystal aggregates decreases with SWCNT loading, however, in reference to the unfilled polyethylene, the three-dimensional growth geometry extracted from the Avrami exponents remains unchanged up to 2 wt%. Consistency between SEM, Raman and electrical transport behavior suggests that the electrical conductivity is dominated by dispersion and the geometry of the SWCNT in the nanocomposites and not by changes or lack thereof in the HDPE semicrystalline structure.  相似文献   

14.
This paper presents the growth evolutions in terms of the structure, growth direction and density of rapid grown carbon nanotube (CNT) forests observed by scanning and transmission electron microcopies (SEM/TEM). A thermal CVD system at around 700 °C was used with a catalyst of Fe films deposited on thin alumina (Al2O3) supporting layers, a very fast raising time to the growth temperature below 25 °C/s, and a carbon source gas of acetylene diluted with hydrogen and nitrogen without water vapor. Activity of Fe catalyst nanoparticles was maintained for 5 min during CVD process, and it results in CNT forests with heights up to 0.6 mm. SEM images suggest that the disorder in CNT alignment at the initial stage of CNTs plays a critical role in the formation of continuous CNT growth. Also, the prolonged heating process leads to increased disorder in CNT alignment that may be due to the oxidation process occurring at the Fe nanoparticles. TEM images revealed that both double- and few-walled CNTs with diameters of 5-7 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. The number of experiments at the same conditions showed a very good repeatability and reproducibility of rapid grown CNT forests.  相似文献   

15.
Hyun Young Jung 《Carbon》2008,46(10):1345-1349
Vertically aligned multi-walled carbon nanotube (MWCNT) arrays were fabricated on an anodic aluminum oxide membrane bonded to a Si wafer. After obtaining a protruding tip for the MWCNTs by etching away some oxide, they were used as electrodes in the fabrication of carbon nanotube field emitters. Long single-walled carbon nanotubes (SWCNTs) were spin coated on the MWCNT arrays of uniform height. Clean SWCNTs were suspended by attaching them to the tips of the vertically aligned MWCNT arrays. The spin coated SWCNTs function as emitters, while the MWCNT arrays function as electrodes. The field emission was greatly improved by coating gold on the MWCNT arrays and annealing at 400 °C. Our field emitter exhibits good field emission properties such as a low turn-on field (1.4 V/μm), high current density (122 mA/cm2), and good stability (55 h for 10% degradation of current density from 400 μA/cm2).  相似文献   

16.
We investigated the formation of self-organized zirconium titanate nanotubes by anodizing a Ti-35Zr alloy in 1 M (NH4)2SO4 + 0.1-2.0 wt.% NH4F electrolytes. The morphology and composition of the zirconium titanate nanotube are controlled by the applied electrochemical conditions. The outer diameter of nanotubes is controlled by the anodization potential in the range between 1 and 100 V (versus Ag/AgCl). Tubes with diameters from 14 to 470 nm can be grown. The nanotube length correlates with the anodic charge up to a length where significant dissolution of the nanotube layer is observed. The wall thickness, composition of the nanotubes and porosity of the nanotube layer are significantly affected by the fluoride ion concentration. The length limiting factor of the nanotube growth is found to be the diffusion of ionic species in the electrolyte.  相似文献   

17.
Composites of nanoporous carbon and single wall carbon nanotubes were heat treated in vacuum at temperatures ranging from 1200 to 2000 °C. The resultant interface between the two allotropes of carbon was characterized using high resolution transmission electron microscopy and Raman spectroscopy. At the interface between the nanoporous carbon and the nanotube, the nanotube served as a template for ordering and orientation of the normally disordered nanoporous carbon along the nanotube axis during high temperature treatment. When annealed at 2000 °C, the nanoporous carbon transformed to graphitic nanoribbon which in turn crushed the nanotube to form a nanoscale carbon “bulb”. This result is interesting since at these temperatures, the native nanoporous carbon is well known to resist ordering and is therefore referred to as being a “non-graphitizing” carbon. That the nanotube should act as a template for the incipient graphitization suggests that bonding and strength for load transfer may be developed at these interfaces.  相似文献   

18.
An ultrasonic bonding technique has been developed for bonding single wall carbon nanotubes (SWNTs) onto metal microelectrodes. The bonding was formed by pressing SWNTs against the electrodes with a vibrating press at an ultrasonic frequency. With this technology, low-resistance contacts are achieved between both metallic and semiconducting SWNTs and electrodes. After bonding, the effective Schottky barrier height between semiconducting SWNT and Ti electrode is as low as ∼6.6 meV in the ON-state and the barrier width is ∼0.9 nm at Vg = 0. The performance of carbon nanotube field-effect transistors (FETs) fabricated by this ultrasonic bonding technique is also significantly improved, with a transconductance as high as 3.4 μS for solid-state back-gate individual nanotube FETs.  相似文献   

19.
In this paper, nickel-cobalt oxides/carbon nanotube (CNT) composites were prepared by adding and thermally decomposing nickel and cobalt nitrates directly onto the surface of carbon nanotube/graphite electrode to form nickel and cobalt oxides. Carbon nanotubes used in this paper were grown directly on graphite substrate by chemical vapor deposition technique. The capacitive behavior of nickel-cobalt oxides/CNT electrode was investigated by cyclic voltammetry and galvanostatic charge-discharge method in 1 M KOH aqueous solutions. The results show that nickel-cobalt oxides/CNT composite electrode has excellent charge-discharge cycle stability (0.2% and 3.6% losses of the specific capacitance are found at the 1000th and 2000th charge-discharge cycles, respectively) and good charge-discharge properties at high currrent density. Additionally, the effect of Ni/Co molar ratio on specific capacitance of the composite electrode was investigated and the highest specific capacitance (569 F g−1 at 10 mA cm−2) is obtained at Ni/Co molar ratio = 1:1.  相似文献   

20.
The preparation of silica-doped high aspect-ratio TiO2 nanotubes and their apatite-forming ability were demonstrated in this study. The high aspect-ratio TiO2 nanotube layers were produced by electrochemical anodic oxidation of Ti in chloride-containing electrolytes. Nanotubes were doped with different concentrations of silica particles through anodization in NaCl electrolyte containing different concentrations of water glass (24 g/L or 48 g/L Na2SiO3). The biomimetic apatite deposition behavior was evaluated under simulated body fluid (SBF) with an ion concentration nearly equal to human blood plasma. The experimental results collectively demonstrate the successful silica doping of the resultant nanotube layers with significant abundant OH groups on their surfaces. The results of hydroxyapatite (HA) growth on nanotubes clearly show that the silica doping greatly enhances the fast nucleation and growth of HA, especially for the tubes in their “as-formed” amorphous state, which usually require a long time for apatite induction. The nanotubes doped with high silica content combined with an anatase or a mixture of anatase and rutile led to the formation of very thick and continuous apatite layers with a thickness of ∼7 μm in 21 days. In contrast, to the tubes doped with a low concentration of silica (grown in an electrolyte containing 24 g/L Na2SiO3), the HA deposited in the form of closely packed spheroid particles and never developed into continuous films. This effect could be attributed to the critical active-site density (silanol groups, >Si-OH), which provides the sterochemical match for apatite growth. Finally, the results of this study provide, for the first time, evidence for the dependence of HA morphology/microstructure on the crystallographic structure and the density of active sites (>Si-OH groups).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号