首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage accumulation in continuous unidirectional glass reinforced composites was studied by acoustic emission (AE) monitoring during three-point-bend loading. Results are presented for four composites monitored during quasi-static break loading, and one composite also monitored during cyclic fatigue and static creep loading. AE response was correlated with the mechanical (stress-strain) response and with visual observation of damage events to study the details of the damage accumulation process. Results show that the failure process is characterized by the sequential occurrence of three distinct damage mechanisms. Specifically, the failure process initiated with cohesive matrix damage, propagated with interfacial debonding, and ended with fiber breakage very near catastrophic failure. The same sequential damage process occurred in all four composites and all three test procedures examined. Results also demonstrate that AE analysis, in combination with mechanical testing and microscopic observation, is a valuable tool in understanding damage accumulation in composites.  相似文献   

2.
Silicon carbide (SiC) fiber‐reinforced SiC matrix composites are inherently multifunctional materials. In addition to their primary function as a structural material, the electric properties of the SiC/SiC composites could be used for the sensing and monitoring of in situ damage nucleation and evolution. To detect damage and use that information to further predict the useful life of a particular component, it is necessary to establish the relationship between damage and electrical resistance change. Here, two typical SiC/SiC composites, melt infiltrated (MI), and chemical vapor infiltrated (CVI) woven SiC/SiC composites, were tested to establish the relationship between the electrical response and mechanical damage in unload–reload tensile hysteresis tests. Compared to the 55% resistance increase seen for CVI composites, the MI SiC/SiC composites exhibit a maximum resistance change in 450% in response to mechanical loading (damage), which is the highest sensitivity known among various composites. An analytic model accounting for fiber breakage and matrix cracks was developed to link the electrical resistance to mechanical damage in the composites. The predictions from the models agree well with the experimental data for both composites with high and low conductive matrices. The residual resistance change after unloading is also correlated to the loading history by the analytical relationship. This study demonstrates that resistance change is sensitive to damage in a predictable manner and can be used to improve the reliability of damage assessment of SiC/SiC composites.  相似文献   

3.
In this paper, the electrical responses of carbon fiber reinforced cementitious composites (CFRCC) to both monotonic and cyclic loading were investigated by electrical resistance measurements. Damage occurring within specimens was also investigated by acoustic emission (AE). Results indicated that the conductivity of the composite was related to the stress level. Under monotonic loading, the electrical resistance decreased with increasing stress at low stress levels and increased with increasing stress at higher stress levels. Under cyclic loading, at lower loading amplitude, the electrical resistance of the system showed reversibility with the change of the load, however, when the loading amplitude was larger, it showed the irreversible increase. Both cases indicated that the breakdown and rebuild-up process of the conductive network under pressure may be responsible for the stress dependency of conductivity. The damage occurring inside material can be monitored in real time by measuring the change in electrical resistance during loading and unloading.  相似文献   

4.
Among ceramic matrix composites (CMCs), carbon fiber-reinforced silicon carbide matrix (C/SiC) composites are widely used in numerous high-temperature structural applications because of their superior properties. The fiber–matrix (FM) interface is a decisive constituent to ensure material integrity and efficient crack deflection. Therefore, there is a critical need to study the mechanical properties of the FM interface in applications of C/SiC composites. In this study, tensile tests were conducted to evaluate the interfacial debonding stress on unidirectional C/SiC composites with fibers oriented perpendicularly to the loading direction in order to perfectly open the interfaces. The characteristics of the material damage behaviors in the tensile tests were successfully detected and distinguished using the acoustic emission (AE) technique. The relationships between the damage behaviors and features of AE signals were investigated. The results showed that there were obviously three damage stages, including the initiation and growth of cracks, FM interfacial debonding, and large-scale development and bridging of cracks, which finally resulted in material failure in the transverse tensile tests of unidirectional C/SiC composites. The frequency components distributed around 92.5 kHz were dominated by matrix damage and failure, and the high-frequency components distributed around 175.5 kHz were dominated by FM interfacial debonding. Based on the stress and strain versus time curves, the average interfacial debonding stress of the unidirectional C/SiC composites was approximately 1.91 MPa. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDXS) were used to observe the morphologies and analyze the chemical compositions of the fractured surfaces. The results confirmed that the fiber was completely debonded from a matrix on the fractured surface. The damage behaviors of the C/SiC composites were mainly the syntheses of matrix cracking, fiber breakage, and FM interfacial debonding.  相似文献   

5.
Continuous fiber-reinforced ceramic matrix composites (CMCs) exhibit different damage mechanisms at multiple scales under cyclic loading. In this paper, the tension-tension fatigue behavior of a plain woven SiCf/SiC CMC was investigated, and damage accumulation and evolution process were studied in detail via acoustic emission (AE) method. With the increase of cycles, the material exhibits obvious hysteresis behavior affected by interfacial slip and wear mechanisms. Most of the fibers with radial fracture characteristic have relatively high strength, showing excellent toughening property. In the stepwise cyclic loading process, the Kaiser effect of AE determines the initiation of AE activities at each initial loading moment, which shows obvious nonlinear damage accumulation behavior of the material. High-energy events are related to significant matrix cracking and fiber fracture, and the evolution process of material damage initiation and propagation is monitored in real time.  相似文献   

6.
《Ceramics International》2020,46(11):18948-18957
Carbon fiber-reinforced silicon carbide (C/SiC) composites are widely used in high-temperature thermo-structural applications. They are subjected to extreme loading conditions, such as random vibrations, which are likely to damage the structure. Structural micro-damage identification during vibration is very difficult, owing to the randomness of the environmental vibration and the complicated response it causes in structures. This study aims to determine a method for monitoring the damage properties of a C/SiC structure under a random vibration environment using acoustic emission (AE) technology. First, a pencil break experiment is conducted to verify the feasibility of the AE technology. Then, an AE monitoring experiment of the structural damage in a vibration environment is systematically conducted. Two types of experiments are designed for simulating the damage formation process inside the structure. In addition, the parameter characteristics of typical AE signals in the random vibration test are analyzed, and the relationships between the AE signal parameters and vibration loading are obtained. Lastly, the different stages of material damage development and damage types in each stage are provided to reveal the damage evolution processes of C/SiC composites. The results indicate that AE technology can be effectively applied to investigate the damage behaviors of C/SiC composites in random vibration environments.  相似文献   

7.
碳/碳(C/C)复合材料是以碳为基体,碳纤维增强的复合材料,具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和膨胀系数小等一系列优异性能,既可作为结构材料承载重荷,又可作为功能材料发挥作用。同时,碳/碳(C/C)复合材料是一种能在超高温条件下工作的高温结构材料,所以在航空航天领域具有广阔的应用前景。本文综述了碳/碳(C/C)复合材料的制备相应力学、热学性能,化学性能和其在各领域的应用进展。  相似文献   

8.
D.D.L. Chung 《Carbon》2012,50(9):3342-3353
This paper reviews carbon materials for significant emerging applications that relate to structural self-sensing (a structural material sensing its own condition), electromagnetic interference shielding (blocking radio wave) and thermal interfacing (improving thermal contacts by using thermal interface materials). These applications pertain to electronics, lighting (light emitting diodes), communication, security, aircraft, spacecraft and civil infrastructure. High-performance and cost-effective materials in various forms of carbon have been developed for these applications. The forms of carbon materials include carbon fiber, carbon nanofiber, exfoliated graphite, carbon black and composite materials. Short carbon fiber cement-matrix composites and continuous carbon fiber polymer-matrix composites are particularly effective for structural self-sensing, with the attributes sensed including strain, stress, damage and temperature. Flexible graphite as a monolithic material and nickel-coated carbon nanofiber as a filler are particularly effective for electromagnetic shielding. Carbon black paste, graphite nanoplatelet paste and flexible graphite (filled with carbon black paste) are particularly effective for thermal interfacing; carbon nanotube arrays are less effective than these pastes. The associated science pertains to the relationship among processing, structure and properties in relation to the abovementioned applications. The criteria behind the design of materials for these applications and the mechanisms of the associated phenomena are also addressed.  相似文献   

9.
A. Bussiba  M. Kupiec  T. Böhlke 《Carbon》2008,46(4):618-630
C/C composites with different porosities, produced by chemical vapor infiltration have been mechanically tested under quasi-static loading in bending modes using uniform and notched specimens. The acoustic emission (AE) method was used to monitor the damage accumulation profile during loading up to fracture, supported by optical and scanning electron microscope characterization. Three stages in the damage buildup up to fracture were observed: Stage I, with no AE activity, Stage II, gradual growth in AE counts up to an abrupt jump and Stage III, sharp increases in AE counts. Moreover, the similarity in the profile between the cumulative AE counts vs. strain data and the predicted crack density vs. strain by the micro mechanical model suggested for interlaminar cracking, indicates the importance of AE in monitoring the damage evolution in composites in terms of AE counts. Fast Fourier transform analysis of the AE waves revealed three characteristic frequencies in Stage III, which is a sign of three main micro-mechanisms of failure which control the failure progress: fiber fracture, debonding and matrix cracking seem to be the active mechanisms.  相似文献   

10.
The interest in structural health monitoring of carbon fiber-reinforced polymers using electrical methods to detect damage in structures is growing because once the material is fabricated the evaluation of strain and damage is simple and feasible. In order to obtain the conductivity, the polymer matrix must be conductive and the use of nanoreinforcement seems to be the most feasible method. In this work, the behavior of nanoreinforced polymer with carbon nanotubes (CNTs) and composites with glass and carbon fibers with nanoreinforced matrices was investigated. These composites were evaluated in tensile tests by simultaneously measuring stress, strain and resistivity. During elastic deformation, a linear increase in resistance was observed and during fracture of the composite fibers, stronger and discontinuous changes in the resistivity were observed. Among other factors, the percentage of nanotubes incorporated in the matrix turned out to be an important factor in the sensitivity of the method.  相似文献   

11.
冯艳艳  李彦杰  杨文  牛潇迪 《化工进展》2020,39(7):2734-2741
以葡萄糖为碳源,采用水热炭化法制备碳球,然后以氯化钴和氯化镍为钴源和镍源,六次甲基四胺为沉淀剂,采用水热法和高温处理合成一种核壳结构的碳球@钴镍金属氧化物纳米复合材料,并研究其作为超级电容器电极材料的储能性能。借助X射线衍射、扫描电镜和低温氮气吸附/脱附等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。结果表明:碳球的加入能有效改善钴镍金属氧化物的分散性,同时降低材料的电子转移阻力,进而提高其电化学性能。当电流密度为1A/g时,所得碳球@钴镍金属氧化物核壳型复合材料的比电容为984.8F/g;当电流密度增大10倍(10A/g)时,仍保留86.3%的初始比电容值。当电流密度为15A/g时,经过2000次恒电流充放电后复合材料的比电容量保持率为94.6%,体现出较好的循环稳定性能。  相似文献   

12.
Adhesives play a key role in the structural integrity of the Wind Turbine Blades as they are one of the main load carrying materials. A deep knowledge of the adhesives' mechanical behaviour in terms of failure mechanisms and damage processes enhances the attempt to optimize the blade design. Therefore, a comprehensive experimental programme was performed in order to determine the static mechanical properties of the adhesives. Ultimate tensile strength, ultimate compression strength, ultimate shear strength and the elastic properties of the adhesive specimens were determined through tensile and compression tests on dogbone specimens and single-lap bonded joints. The Acoustic Emission (AE) technique was used to relate the acoustic activity in the specimens to their damage state. More specifically, a frequency-based methodology, analysing the AE data, was used for the identification of the different damage mechanisms into the material during the loading. In addition, Digital Image Correlation technique, as a full-field technique, was used to measure displacements and deformations.  相似文献   

13.
《Ceramics International》2020,46(9):13282-13291
2D-C/SiC composites have widely been used in aeronautical and aerospace engineering, but their mechanical behaviors under small-mass and high-speed impact have not been thoroughly studied yet. In this paper, 2D-C/SiC beam specimens were impacted by a single-stage light-gas gun and the fracture processes were captured by a high-speed camera. Post-impact internal and surface damage morphologies were scanned by a CT and a SEM, respectively. Similar damage modes were revealed by high-speed images. Subsequently, quasi-static post-impact tension tests were conducted to understand the residual mechanical properties. Acoustic emission (AE) signals of specimens were detected during the tests and then classified by the K-means algorithm. Therefore, evolutions of matrix damage, interfacial delamination and fiber fracture were recognized. At the same time, strain value was obtained by digital image correlation (DIC) method and main crack propagations were obvious in strain contours. A combination of the AE and DIC methods very well monitored the real-time damage during post-impact testing, which further revealed the damage during impact phase.  相似文献   

14.
《Ceramics International》2022,48(4):4699-4709
The analysis of failure behaviors of continuous fiber-reinforced ceramic matrix composites (CMCs) requires the characterization of the damage evolution process. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso architecture, inherent defects, and loading conditions. In this paper, the in-plane tensile mechanical behavior of a plain woven SiCf/SiC CMC was investigated, and damage evolution and failure process were studied in detail by digital image correlation (DIC) and acoustic emission (AE) methods. The results show that: the initiation of macro-matrix cracks have obvious local characteristic, and the propagation paths are periodically distributed on the material surface; different damage modes (matrix cracking and fiber fracture) would affect the AE energy signal and can be observed in real-time; the significant increase of AE accumulated energy indicates that serious damage occurs inside the material, and the macroscopic mechanical behavior exhibits nonlinear characteristic, which corresponds to the proportional limit stress (PLS) of the material.  相似文献   

15.
Glass fiber reinforced polyester composites, with gelcoat, are widely used as structural materials for hulls, pools, pipes, and tanks in aggressive environments, despite the lack of knowledge concerning their resistance to water in the long term. In addition, these materials may be damaged through an osmotic process, especially when immersed in water, as are boat hulls, and this phenomenon can lead to a delamination of the gelcoat and of the laminate plies. The aim of this experimental study is to evaluate the mechanical characteristics with time of orthotropic laminates subjected to accelerated tests of humid aging. The evolution of the properties with water absorption is followed by a nondestructive test procedure based on vibrational mode analysis. The results are additionally confirmed by quasi-static bending and shear tests. It is shown that the main effects of water on the composite mechanical properties are the plasticization of the matrix an the osmotic delamination of the plies; on the other hand, gelcoat blistering had no influence on the durability. This paper highlights the need for and the complementarity of both nondestructive and destructive mechanical tests for studying the long-term behavior of composites in marine environments.  相似文献   

16.
Polyvinyl alcohol–carbon nanotube (PVA–CNT) fibers differing on their pre-stretching condition were embedded in glass fiber reinforced plastic (GFRP) composites and used as strain sensors for damage monitoring of the composite. Strain sensing of the composite was made by the in situ measurement of the embedded fiber’s electrical resistance change during the mechanical tests. Four glass fiber composite plates were manufactured; each one had embedded a different type of produced PVA–CNT fibers. The multi-functional materials were tested in monotonic tensile tests as well as in progressive damage accumulation tests. The electrical resistance readings of the PVA–CNT fibers were correlated with axial strain values, taking into account the induced damage of the composite. It has been demonstrated that increasing the fiber’s pre-stretching ratio, its electrical resistance response increases due to higher degree of the CNTs alignment in the PVA matrix. Higher fiber pre-stretching degree enables the better strain monitoring of the composite due to higher measured electrical resistance change values noticed for the same applied axial strain values. To this end, it enables for the better monitoring of the progressive damage accumulation inside the composite.  相似文献   

17.
The production of glass/plant fiber hybrid laminates is a possibility for obtaining semistructural materials with sufficient impact properties, and a better life cycle analysis (LCA) profile than fiberglass. The simplest and possibly the most effective configuration for the production of these hybrids would involve the use of a plant fiber reinforced laminate as the core between two glass fiber reinforced laminates. A main limitation to the use of composites including plant fibers is that their properties may be significantly affected by the presence of damage, so that even the application of a low stress level can result in laminate failure. In particular, it is suggested that when loading is repeatedly applied and removed, residual properties may vary in an unpredictable way. In this work, E‐glass/jute hybrid reinforced laminates, impacted in a range of energies (10, 12.5, and 15 J), have been subjected to post‐impact cyclic flexural tests with a step loading procedure. This would allow evaluating the effect of damage dissipation offered by the plant fiber reinforced core. The tests have also been monitored by acoustic emission (AE), which has confirmed the existence of severe limitations to the use of this hybrid material when impacted at energies close to penetration. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
The electrical properties of C/SiC composites could be used for online and in-situ damage monitoring. To investigate alternating current (AC) impedance response to damage in the C/SiC composites, monotonic and incremental cyclic tensile tests were performed. Both AC impedance and acoustic emission (AE) techniques were applied to clarify the damage evolution during the tests. The relationship between damage and electrical impedance response was investigated and validated via macroscopic equivalent circuit models. The effects of longitudinal deformation and damage on AC impedance characteristics, including impedance magnitude and phase angle, were obtained from the models. Results showed that the longitudinal deformation increases the impedance magnitude and the phase angle, and the damage causes the impedance magnitude to increase and the phase angle to decrease. The phase angle is significantly sensitive to fiber breakage, which makes the AC-based method more suitable for online damage monitoring and final failure warning.  相似文献   

19.
Carbon/carbon (C/C) composites are considered as one of the most promising materials in structural applications owing to their excellent mechanical properties at high temperature. However, C/C composites are susceptible to high-temperature oxidation. Matrix modification and coating technology with ultra-high temperature ceramics (UHTCs) have proved to be highly effective to improve the oxidation and ablation resistance of C/C composites. In this paper, recent advances in oxidation and ablation resistance of C/C composites were firstly reviewed, with attention to oxidation and ablation properties of C/C composites coated or modified with UHTCs. Then, several new methods in improving oxidation and ablation resistance were discussed, such as by using nanostructures to toughen UHTCs coatings or carbon matrix and the combination of matrix modification and coating technology. In addition, relevant ablation tests with scaled models were also briefly introduced. Finally, some open problems and future challenges were highlighted in the development and application of these materials.  相似文献   

20.
Electrically conductive glass-fiber-reinforced polymer composites have been prepared by adding carbon black, and carbonization processes have been applied to the resulting matrices. The carbonized composites were found to show characteristic changes in resistance during cyclic tensile tests, in which the resistance increased in the loaded state was retained even after unloading. Pyrolysis temperature dependence of the residual phenomena was investigated in order to understand the effects of the carbonized matrix and the carbon black network. The residual behavior became more pronounced with increasing pyrolysis temperature until 500 °C, while that diminished over 600 °C. The thermal decomposition of the matrix was almost completed up to 500 °C, and the shrunk matrix coexisting with glass fibers had a residual tensile stress along the fiber direction. The matrix carbonized at higher than 600 °C showed an increase in conductivity, which disrupted the strain-sensitive percolation network and hence the resistance response. These results showed that irreversible change in the carbon black network under the internal tensile stress provided the residual phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号