首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于Elman神经网络的网络安全态势预测方法   总被引:1,自引:0,他引:1  
尤马彦  凌捷  郝彦军 《计算机科学》2012,39(6):61-63,76
准确把握网络系统的安全态势,能够为网络管理者做出安全防护的决策提供有效的信息。在评估当前网络安全态势的基础上,利用加权后得到的网络安全态势值的非线性时间序列的特点,提出了一种基于Elman神经网络的态势预测方法,它利用Elman网络具有动态记忆功能和对历史数据具有敏感性等优点,对网络安全态势进行预测。通过实验仿真表明,该方法能够准确有效地预测网络安全态势。  相似文献   

2.
针对神经网络态势预测模型训练复杂度高的问题,提出了一种基于改进卷积神经网络的态势预测方法。结合深度可分离卷积与分解卷积技术的优点,提出了一种基于复合卷积结构的改进型卷积神经网络安全态势预测模型,实现了态势要素和态势值的映射。实验仿真结果证明,相比于已有的典型预测方法,该方法明显降低了复杂度,减少了预测时间,并提升了预测准确率。  相似文献   

3.
针对网络安全态势感知中的预测问题,提出了采用径向基函数(R13F)神经网络对态势值进行预测的方法。为了提高RI3F神经网络的预测精度,使用混合递阶遗传算法(HHGA)对RI3F神经网络进行训练,获得了神经网络结构参数。实验结果说明了此预测方法的有效性,并通过与已有的预测方法进行对比实验,验证了所提算法在精度方面的优越性。  相似文献   

4.
网络安全态势预测是网络安全领域的研究热点之一,在分析当前网络安全态势预测方法的基础上,论文利用Kalman滤波理论建立了网络安全态势预测模型,利用当前和过去时段的攻击强度和网络安全态势值对下一时段的网络安全态势进行预测.实验结果表明该算法的预测精度优于传统的GM(1,1)算法和普通卡尔曼算法(即未结合影响因素),算法适应性和实时性优于RBF算法.  相似文献   

5.
大规模网络安全态势分析与预测系统YHSAS   总被引:3,自引:0,他引:3  
YHSAS系统面向国家骨干网络安全以及大型网络运营商、大型企事业单位等大规模网络环境,对能够引起网络态势发生变化的安全要素进行获取、理解、显示以及预测未来的发展趋势。文章对YHSAS系统的系统架构以及其中的关键技术,包括分布异构网络安全数据集成技术、面向重大网络安全事件发现的关联分析技术、基于数据流和多维分析的网络安全数据实时分析技术、网络安全态势预测技术等。性能测试显示,YHSAS系统在态势分析和预测方面均具有较高的实时性和精度,满足了大规模网络安全态势分析与预测的需求。  相似文献   

6.
陈虹  王飞  肖振久 《计算机科学》2013,40(11):108-111
针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算过程中,利用IHS算法的全局搜索能力来优化选取RELM的输入权值和隐含层阈值,在一定程度上提升了RLLM的学习能力和泛化能力。仿真实验表明,与已有的其他预测方法相比,该方法具有更好的预测效果。  相似文献   

7.
基于时空维度分析的网络安全态势预测方法   总被引:1,自引:0,他引:1  
现有网络安全态势预测方法无法准确反映未来安全态势要素值变化对未来安全态势的影响,且不能很好地处理各安全要素间的相互影响关系对未来网络安全态势的影响,提出了基于时空维度分析的网络安全态势预测方法.首先从攻击方、防护方和网络环境3方面提取网络安全态势评估要素,然后在时间维度上预测分析未来各时段内的安全态势要素集,最后在空间维度上分析各安全态势要素集及其相互影响关系对网络安全态势的影响,从而得出网络的安全态势.通过对公用数据集网络的测评分析表明,该方法符合实际应用环境,且相比现有方法提高了安全态势感知的准确性.  相似文献   

8.
现有网络安全态势预测算法对初始训练数据依赖性强,预测结果客观性差。提出了基于云的网络安全态势预测思想和基于云的网络安全态势预测规则挖掘算法。采用基于云模型的属性论域区间软划分方法解决了定性与定量转换中的区间硬性划分导致的边界元素内在联系丢失的问题。通过实验验证了算法的可行性和有效性。基于云的网络安全态势预测思想,不需要对预测算法进行数据训练,提高了网络安全态势预测的客观性。  相似文献   

9.
基于RAN-RBF神经网络的网络安全态势预测模型   总被引:1,自引:0,他引:1  
甘文道  周城  宋波 《计算机科学》2016,43(Z11):388-392
为了更准确地获悉网络安全态势的发展情况,提出了一种基于资源分配网络径向基函数(Resource Allocating Network Radical Basis Function,RAN-RBF)神经网络的网络安全态势预测(Network Security Situation Prediction,NSSP)模型。该模型采用资源分配网络算法对网络安全态势样本进行聚类,得到神经网络的隐含层节点数,引入剪枝策略删除对网络贡献不大的节点,用改进的粒子群算法(Modified Particle Swarm Optimization,MPSO)对神经网络的中心、宽度、权值进行优化,对未来网络安全态势进行预测。利用校园网网络管理部门提供的数据进行的仿真实验表明,相对于K-均值RBF神经网络预测模型,该模型可以得到更合适的RBF神经网络结构和控制参数,提高了预测精度,更加直观地反映了网络安全态势的总体情况,为网络安全管理员提供了态势图。  相似文献   

10.
网络安全态势评估是当前网络安全领域的研究热点之一。本文对国内外已有的安全态势评估方法进行分析和比较,从主机节点和链路方面对网络安全态势进行评估,提出了一种基于多源知识融合的网络安全态势评估模型。通过将多数据源信息融合获得节点安全态势,利用网络时效熵得到链路安全态势,最后将两者融合计算实现网络安全态势定量评估。通过网络仿真软件进行仿真实验,对所提出的的网络安全态势评估模型进行了验证,实验结果能够客观反映网络安全态势的变化,准确的对网络安全态势进行评估。  相似文献   

11.
针对网络安全态势评估过程中存在数据源单一、实时性不强、准确率不高的问题,提出一种基于改进关联规则算法(Apriori算法)的网络安全态势感知方法;通过对数据的分析,发现在网络中存在关于安全态势的关联规则;通过网络攻击影响熵值序列的分析,对关联规则进行分类为空间正常和异常空间,进而对关联规则进行聚类分析;根据聚类后的规则划分网络安全态势等级;将改进后的算法应用到网络安全态势感知当中,实验结果表明,该方法满足了网络安全危险预警和实时监控的要求;改进的算法用于安全态势感知是可行的、有效的。  相似文献   

12.
Due to rapidly increasing complex attacks, networks become more and more insecure. How to accurately predict the future security situation of networks is thus an important research issue. Forecasting security situation can improve the awareness of network states and provide decision support to threat analysis and network planning. This paper provides a combination model of neural networks to predict the security situation of computer networks. Our contribution is in two aspects. On the one hand, we select several single neural network models including Backward Propagation (BP) network, Elman network, and Radial Basis Function (RBF) network to construct the combination model. On the other hand, we use the entropy method to determine the weights of each single model in the combination model. Experimental results show that the proposed combination model can predict the security situation of networks more e?ectively than any single neural network.  相似文献   

13.
本文提出一种基于网络安全态势感知的校园网安全配置评估模型,利用网络安全态势评估中的漏洞扫描、聚类分析和关联分析等技术对校园网中的通信设备和网络配置进行评估。通过评估发现网络安全策略的漏洞、重复布防问题并促成新的基于协同的网络策略,形成统一的、完备的校园网整体安全布防。  相似文献   

14.
网络安全态势感知不同于传统的安全措施,它可以对网络中各种活动的行为进行辨识,从宏观的角度进行意图理解和影响评估,进而提供合理的决策支持,在提高网络的监控能力、应急响应能力及预测网络安全的发展趋势等方面都具有重要的意义。分别对态势感知和网络安全态势感知的定义进行了归纳梳理,对经典的态势感知模型和新发展的网络安全态势感知模型进行了总结与对比;介绍了网络安全态势感知的关键技术,主要分为基于层次化分析、机器学习、免疫系统和博弈论的技术;介绍了近年来网络安全态势感知在因特网、工控网和物联网中的应用;对其未来发展趋势和待解决的问题进行了总结与展望。  相似文献   

15.
针对目前网络安全态势评估模型准确性和收敛性有待提高的问题,提出一种基于SAA-SSA-BPNN的网络安全态势评估模型。该模型利用模拟退火算法(SAA)可以一定概率接受劣解并有大概率跳出局部极值达到全局最优解的特性来优化麻雀搜索算法,利用优化后的麻雀搜索算法(SSA)具有良好稳定性和收敛速度快且不易陷入局部最优的特点对BP神经网络(BPNN)进行改进,找到最佳适应度个体并获取最优权值和阈值,将其作为初始值赋给BP神经网络,将预处理后的指标数据输入改进后的BP神经网络模型对其进行训练,利用训练好的模型对网络系统所遭受威胁的程度进行评估。对比实验结果表明,该评估模型比其他基于改进BP神经网络的态势评估模型准确性更高,收敛速度更快。  相似文献   

16.
针对BP神经网络类方法对标签数据的依赖性缺陷,提出了一种基于深度自动编码网络的态势评估方法。模型应用深度自动编码器作为基本单元构建深度自编码网络,结合专家经验和层次化评估的方法训练深度自编码网络。利用无标签数据采用无监督逐层算法对网络进行预训练,确定网络各层参数及权值的范围空间。在此基础上,采用有监督算法使用有标签样本对网络进行微调,对各层参数及权值进行优化,最终形成具有对输入态势数据进行准确评估能力的模型。多种样本数量条件下的对比实验表明,相对于BP神经网络类方法,基于深度自动编码网络模型受标签的影响较小,明显减少了对专家经验的依赖,并且具有整体上较高的评估精度。  相似文献   

17.
为了提高网络流量的预测精度,克服小波神经网络收敛速度慢、易陷入局部最优的缺点,提出一种遗传算法优化小波神经网络的网络流量预测模型.首先计算延迟时间和嵌入维数,构建小波神经网络的学习样本,然后采用小波神经网络对网络流训练集进行学习,并采用改进遗传算法对小波神经网络参数进行全局寻优,提高收敛速度和网络学习精度,最后采用网络流量数据对模型性能进行仿真分析.结果表明,相对于对比模型,本文模型的平均误差大幅度降低,训练次数急剧减,减小了二次优化训练的次数,具有更大的实际应用价值.  相似文献   

18.
由于BP神经网络本质上采用的是梯度下降算法,具有收敛速度慢、容易陷入局部极小点等缺陷.针对这种情况,用具有良好全局搜索能力的遗传算法来改进BP神经网络模型,对神经网络的初始权值和阈值进行优化.仿真结果表明,遗传BP神经网络具有良好的预测效果,预测精度比传统的BP神经网络要高,误差更小,说明了遗传BP神经网络对网络流量预测是高效可行的.  相似文献   

19.
传统的安全态势评估方法主要面向小规模网信息系统,忽略了网络节点间风险的关联性.针对能源互联网中复杂的网络结构,提出基于威胁传播的多节点网络安全态势量化评估方法,1)该方法提出能源互联网网络节点的概念和相关定义,并利用图理论对能源互联网的网络结构进行建模;2)提出基于威胁传播概率的安全态势量化方法,计算网络节点安全态势,并提出多节点网络的权重计算方法LR-NodeRank,进而评估整个网络的融合安全态势;3)提出一种基于最简威胁图的安全态势改进方法,计算需要开展安全加固的网络边界.实验结果表明:该方法能够准确评估多节点网络的安全态势,能够有效计算边界连接关系.  相似文献   

20.
姚晔 《计算机仿真》2012,(4):157-160
研究网络优化入侵检测问题,网络安全态势受网络攻击行为、病毒、自身漏洞、木马等多种因素影响,具有高度的非线性、时变性、突变性等复杂特点,采用传统单一预测方法只能反映部分信息,无法进行准确的预测。为提高网络安全态势预测精度,提出一个熵值学的网络安全态势组合预测模型。首先利用熵值法为单一网络安全态势预测模型分配加权系数,然后根据单一模型的预测结果进行加权运算,得到了网络安全态势的组合预测结果,最后利用具体网络安全态势数据进行仿真测试。仿真结果表明,组合预测模型提高了网络安全态势预测精度,为网络安全态势预测提供了一种新的解决途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号