首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 86 毫秒
1.
基于模糊神经网络的模型参考自适应控制   总被引:11,自引:0,他引:11  
张乃尧  栾天 《自动化学报》1996,22(4):476-480
用模糊神经网络作为控制器,依靠参考模型产生理想的控制系统闭环响应,从而随时得到控制系统的输出误差.用梯度法实时修正模糊控制器的输入和输出隶属度参数,得到一种在线模糊自适应控制的新方法.通过倒立摆的仿真实验表明,该方法是可行的并能适应对象特性的大范围变化.  相似文献   

2.
一种模糊神经网络自适应预测控制方案的研究   总被引:1,自引:0,他引:1  
提出了一种模糊神经网络自适应预测控制方案,对学习公式进行了理论推导,并结合误差补偿以提高预测控制的精度。仿真实验表明,该算法可实现模糊控制和神经网络的优势互补,对非线性复杂系统具备良好的控制性能  相似文献   

3.
将模糊神经网络应用于传统线性积分自适应控制,构造了一类模糊神经自适应方法,用于消除非线性系统响应偏差.模糊神经网构成直接非线性自适应控制器.对线性及非线性对象的仿真控制以及与经典自适应控制的比较,表明了模糊神经自适应控制器的有效性.  相似文献   

4.
自适应控制是一种提高系统鲁棒性的有效方法。模糊神经网络具有了模糊逻辑和神经网络两者的优点,结合模糊神经网络(Fuzzy Neural Network—FNN)自适应控制策略和通用模型控制(Common Model Control—CMC)方法,以此来实现被控对象的逆控制,提出了基于模糊神经网络的通用模型自适应控制(FNNC—CMAC)。此控制方法参考轨迹是一条典型二阶曲线,仿真结果验证了鲁棒性,与基于模糊神经网络的通用模型控制及基于模糊逻辑的通用模型自适应控制相比,其控制性能更好。  相似文献   

5.
基于RBF模糊神经网络模型的广义预测控制   总被引:1,自引:0,他引:1  
广义预测控制对线性系统具有较好的控制效果,为将它应用到非线性系统,本文提出一种将RBF模糊神经网络与广义预测控制相结合的方法,仿真证明控制有效。  相似文献   

6.
基于模糊神经网络水下机器人直接自适应控制   总被引:5,自引:0,他引:5  
提出了基于广义动态模糊神经网络的水下机器人直接自适应控制方法, 该控制方法既不需要预先知道模糊神经结构, 也不需要预先的训练阶段, 完全通过在线自适应学习算法构建水下机器人的逆动力学模型. 首先, 本文提出了基于这种网络结构的水下机器人直接自适应控制器, 然后, 利用 Lyapunov 稳定理论, 证明了基于该控制器的水下机器人控制系统闭环稳定性, 最后, 采用某水下机器人模型仿真验证了该控制方法的有效性.  相似文献   

7.
林雷  任华彬  王洪瑞 《控制工程》2007,14(5):532-535
滑模控制(SMC)响应快,对系统参数和外部扰动呈不变性,可保证系统的渐近稳定性,但其缺点是控制存在很强的抖动;而模糊神经网络(FNN)具有模糊系统和神经网络共同的特点。将滑模控制和模糊神经网络控制有机结合,利用简单得到的学习信号对模糊神经网络进行在线学习,通过平滑切换函数实现直接自适应控制策略。对两连杆机械手的仿真研究表明,在存在模型误差和外部扰动的情况下,该方案既能达到高精度快速跟踪的目的,又能有效减小滑模控制的抖动问题。  相似文献   

8.
王萧  任思聪 《控制与决策》1997,12(3):208-212
在非线性系统的模糊动力学模型基础上,提出一种模糊神经网络变结构自适应控制器;网络的结构根据非线性系统特性动态构成,基于该网络提出非线性预测器,基于梯度法提出了一种网络参数学习算法,并分析了收敛性及其性质。将网络预测器与参数学习算法相结合,构成自适应控制算法,证明了算法的收敛性。仿真结果证实了算法的有效性。  相似文献   

9.
一种基于模糊逻辑神经网络的自适应控制及其应用   总被引:12,自引:3,他引:12  
本文提出了一种模糊逻辑神经网络自适应控制器.这种控制器由一个模糊高斯神经网络和一个多层神经网络组成.它具有自适应和学习能力.计算机仿真和实际的伺服直流电机调速实验的结果表明本文提出的这种控制器是切实可行的,其系统响应和鲁棒性优于常规的Fuzzy控制.  相似文献   

10.
基于神经网络的模糊自适应PID控制方法   总被引:51,自引:0,他引:51  
提出一种基于BP神经网络的模糊自适应PID控制器。该控制器综合模糊控制、神经网络与PID调节各自的优点,既具有模糊控制的简单和有效的非线性控制作用,又具有神经网络的学习和适应能力,同时具备PID控制的广泛适应性,仿真实验表明该控制器对模型、环境具有较好的适应能力和较强的鲁棒性。  相似文献   

11.
针对并联机器人数学模型不完全确知并包含外部扰动的非线性多变量系统,提出一种基于模糊神经网络运算法则(FNNA)的自适应控制策略。将各个支链的模糊规则通过神经网络进行在线训练并得出模糊规则的权重并将此运用于在线辨识非线性自适应控制系统的未知动态,有效抑制了系统的数学模型不精确所产生的误差及外部扰动。仿真结果表明该控制方法明显提高了控制系统的轨迹跟踪性能,并对外部干扰及系统的非线性具有很强的鲁棒性。  相似文献   

12.
针对机械臂受内部摩擦和时变扰动等不确定性因素的影响,其轨迹跟踪控制系统的跟踪精度会下降,且影响系统的稳定性,提出一种基于径向基函数神经网络的自适应控制方法。首先,利用RBF神经网络采用离线训练和在线学习的方式对机械臂的动力学模型进行辨识;其次针对机械臂控制系统中的摩擦,设计RBF神经网络自适应控制算法对其进行逼近得到补偿控制量。针对时变扰动和神经网络逼近误差设计鲁棒项,以克服众多不确定性因素带来的影响,同时通过构造李亚普诺夫函数对所设计的控制系统进行稳定性分析;最后,仿真实验结果证明提出的控制方法具有较高的跟踪精度、抗干扰能力和较强的鲁棒性。  相似文献   

13.
一种基于BP神经网络模型的自适应PID控制算法   总被引:7,自引:1,他引:7  
本文应用神经网络建寺了系统参数模型,将线性系统时变参数的变化规律转化为神经网络参数模型,反映了参数随状态而变的规律;再结合文献[4]已知模型FPID控制参数的计算,推导出一种更具有应用性的白适应PID控制算法。通过在计算机上对非线性系统仿真,结果表明了这种白适应PID控制算法的有效性。  相似文献   

14.
自适应模糊神经网络控制系统的研究   总被引:5,自引:6,他引:5  
自适应模糊神经网络控制器是由模糊控制和神经网络相结合构成,它不依赖被控对象的数学模型,并能自动产生模糊控制规则,又具有良好的自适应性,是目前受人们关注的课题。本文在对其分析的基础上又提出了卡尔曼滤波的学习算法,解决了原BP算法实时性差的问题,通过仿真实验说明了其优越性,并体现了模糊神经网络与最优控制相结合的思想。  相似文献   

15.
一种基于PSO的自适应神经网络预测控制   总被引:1,自引:0,他引:1  
针对非线性系统,提出了一种基于微粒群优化(PSO)的自适应神经网络预测控制方法.采用对角递归网络(DRNN)对非线性系统进行建模,并利用扩展卡尔曼滤波(EKF)递推估计算法在线计算网络模型参数的Jacobian矩阵以实现模型参数的自适应.利用PSO算法在线优化求解非线性系统的预测控制律,以克服传统基于梯度法的非线性规划方法求解预测控制律时对初始条件非常敏感的缺点.生化发酵过程的仿真结果表明,所提出的控制方法具有良好的跟踪能力和抗干扰能力.  相似文献   

16.
某大型设备的液压系统在工作中需要一定的油压对其进行支撑,所以要保证油压根据要求维持在某一稳定值。针对于此,研究并设计了一个基于DSP的自适应神经元网络控制系统,通过该控制算法可以调整油泵电机的频率使得油压达到要求的稳定值。由于该液压控制系统在实际运行中油压值会出现波动,因此调节的快速性和稳定性是本控制系统的关键。该控制算法经由现场采样和实验的仿真测试,证实了其有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号