首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
渗碳钢20crMnTi执行一次淬火工艺后,硬度值偏低,在48—50HRC之间,金相组织为粗针状马氏体+35残余奥氏体+未溶碳化物,因为粗针马氏体与残余奥氏体的存在,使得渗碳件的强度及表面硬度降低。执行二次淬火工艺后表面硬度达到了60HRCP以上,组织为隐晶马氏体+弥散的颗粒状碳化物,该工艺有效的减少了残余奥氏体量,提升了渗碳件的硬度及耐磨性。  相似文献   

2.
矿山机械用构件因服役环境恶劣,常常出现磨损失效。低合金耐磨钢制造的构件采用淬火加低温回火得到单一马氏体组织,其硬度较高,但韧性差。目前,采用含有一定Si含量的中锰耐磨钢构件,通过工艺参数的有效控制可以得到马氏体加残余奥氏体(M+RA)复相组织,从而保证矿山机械构件在具有一定硬度的同时还具有一定的塑韧性。利用Gleebel3800热模拟机、金相显微镜(OM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)技术、X射线衍射(XRD)仪及维氏硬度计等手段,研究了不同冷却速率对中锰马氏体耐磨钢的组织演变、残余奥氏体含量、形貌和维氏硬度的影响。结果表明,冷却速率由30℃/s降低至0. 05℃/s时,试验钢均获得马氏体+残余奥氏体组织。当试验钢以非常缓慢的速率(0. 05℃/s)冷却时,过饱和马氏体中的碳充分配分至残余奥氏体中,增加残余奥氏体的稳定性,因而室温下残余奥氏体体积分数较高(~12%),残余奥氏体呈现膜状和明显的块状形貌。而当冷却速率较快(10℃/s)时,残余奥氏体体积分数低于6%,残余奥氏体呈薄膜状和细小块状。另外,不同冷却速率微观结构演变及残余奥氏体体积分数不同,导致试验钢硬度发生显著变化。冷却速率缓慢时,碳的固溶强化及马氏体位错强化作用减弱,软质相残余奥氏体体积分数增加,使得试验钢硬度降至最低值HV508。当冷却速率大于10℃/s时,过饱和马氏体中碳的固溶强化及其位错亚结构强化作用使得硬度值较高。中锰耐磨钢的维氏硬度y与冷却速率x之间符合双指数衰减关系:y=-42. 23exp(-x/4. 75)-38. 27exp(-x/0. 17)+573. 76。  相似文献   

3.
将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。  相似文献   

4.
本文研究了硬度,残余奥氏体量以及一次硬化处理和二次硬化处理对 Crl2MoV 钢疲劳性能的影响。结果表明,在本试验条件下,随钢的硬度升高,疲劳裂纹萌生循环数增大,而扩展循环数减小,和结构钢的规律相同;经二次硬化处理后,其疲劳寿命高于一次硬化者;大量残余奥氏体存在,明显降低疲劳寿命,并使 m 值显著增大。  相似文献   

5.
针对再制造大型热轧支承辊堆焊层的服役早期开裂现象,通过检测分析堆焊层硬度、显微组织和断口形貌,确定堆焊层开裂失效机制是低周接触疲劳破坏.由于堆焊层内残余奥氏体含量过多,马氏体相含量相对不足,堆焊金属低硬度、低强度,降低了再制造热轧支承辊面堆焊层的抗接触疲劳性能.通过高温回火热处理促使堆焊层残余奥氏体向马氏体转变,调控辊...  相似文献   

6.
耐磨材料中残余奥氏体在磨损中的结构变化及其影响   总被引:1,自引:0,他引:1  
通过x衍射分析、薄膜透射电镜分析和亚表层硬度分析,研究了GCr15和高铬铸铁两类耐磨材料中残余奥氏体在磨料磨损中的结构变化及其影响。试验结果表明,磨损中相当数量的残余奥氏体发生马氏体转变,形成密排六方ε型马氏体,提高表面硬化程度,改善一定磨损条件下材料的耐磨性。  相似文献   

7.
邱玲  李刚  邱星武 《材料导报》2008,3(2):39-41
利用CO2轴流激光加工机对40Cr钢表面进行激光熔凝硬化处理。利用扫描电子显微镜、金相显微镜和显微硬度计研究了不同工艺下熔凝硬化层及基体的显微组织和硬度分布特征。实验表明:熔凝硬化层由熔化区、相变硬化区和热影响区组成;由表及里组织分别为极细隐晶马氏体+少量残余奥氏体、隐晶马氏体+碳化物+残余奥氏体、马氏体+回火屈氏体+铁素体。硬化层最高硬度约是基体的3倍;随着扫描速度的增加表层硬度先增加后减小,当扫描速度为2.5m·min^-1时,表层硬度最大,为1097.9HK。  相似文献   

8.
研究了Cr12MoV模具钢堆焊工艺,对堆焊接头组织形貌分析和显微硬度测定表明,堆焊层具有高硬度,热影响区中的白亮带为残余奥氏体,它有利于缓解热应力.  相似文献   

9.
采用预拉伸实验对低硅含铝TRIP钢变形过程中残余奥氏体的演变规律进行研究,建立残余奥氏体变形过程中稳定性与加工硬化指数n之间的对应关系,在此基础上通过设计不同热处理工艺,获得具有不同初始残余奥氏体特性的TRIP钢以及具有不同组织构成的TRIP钢,并分析了TRIP钢的残余奥氏体稳定性。结果表明:TRIP钢中的残余奥氏体随着变形的深入,稳定性逐渐增加;残余奥氏体越稳定,TRIP钢的瞬时加工硬化值越稳定(n值越稳定);随着初始碳含量的增加,残余奥氏体在变形过程中的稳定性也随之提高。在变形过程中,残余奥氏体的稳定性受残余奥氏体碳含量,分布以及周围相等因素的共同影响。  相似文献   

10.
研究了亚临界热处理对16Cr-2.5Mn高铬白口铁组织转变和性能的影响,并利用TEM、SEM、XRD和M200磨损试验机分析了其硬化机制和对耐磨性的影响.研究表明:过饱和奥氏体中固溶的Cr和C在亚临界热处理时会以(Cr,Fe)23C6形式析出,残余奥氏体发生了马氏体相变,使合金产生二次硬化;亚临界热处理中,保温时间过长,将导致(Cr,Fe)23C6向M3C原位转变发生,基体组织发生珠光体转变,导致硬度和耐磨性能不同程度降低;残余奥氏体含量为10%左右时,合金获得最高硬度和最佳耐磨性能.  相似文献   

11.
Cr12钢激光硬化处理后的组织   总被引:1,自引:0,他引:1  
激光相变硬化处理可以使 Cr12钢的硬度提高至~1100HV,并细化其组织。激光相变硬化处理主要通过改变碳化物的溶解程度及合金元素的扩散均匀程度,影响γ的化学成分及分布、M_s点的位置及γ_r 的含量。激光处理后,γ_r 最少时硬度最高。  相似文献   

12.
The effects of laser hardening parameters such as beam power,beam diameter and scanning rate on microstructure and mardness of 9CrSi steel were investigated.The microstructure of the surface layer of 9CiSi steel was changed from pearlite to martensite,retained austenite and carbide by laser hardening .The depth of the hardened layer increased with increasing laser energy density and the surface hardeness increased by 3-5times as high as the untreated steel.The laser hardened surface had good wear resistance due to martensite and carbide in the surface layer.The wear mode at low speed was abrasive,while the wear mode at high speed was adhesive.  相似文献   

13.
采用热磁分析、显微硬度分析与直读光谱分析等相结合的方法,对无碳化物贝氏体钢进行渗碳后的深冷处理工艺优化。结果表明:无碳化物贝氏体钢在1193K渗碳空冷后,测试有效硬化层样品的热磁曲线,可以得到有效硬化层的深冷处理温度宜低于134K。经123K深冷处理和463K回火,有效硬化层残留奥氏体含量约为12.2%(质量分数)。通过深冷处理使渗碳钢近表面层得到显著硬化,再经低温回火使近表面层硬度均达到810HV_(1.0)左右,渗碳钢的硬度梯度分布趋于合理。  相似文献   

14.
There are three major constituents, i.e. tempered martensite, retained austenite and primary carbides of Cr7C3 and Cr23C6, in the microstructure of a D-2 tool steel. An abrasive wear test with SiC sand paper under two different loads was conducted on specimens having various contents of the above constituents in order to investigate their role in the wear characteristics. It is found that although the wear resistivity seems to vary with changing retained austenite content or hardness, the primary carbides, however, are more likely to be the dominating factor causing the weight loss, especially for wear under a relatively heavy load, From microstructural examination of the worn specimens, cracks and spallation initiated from the primary carbides were observed. Both of the primary carbides and retained austenite were massively removed from the worn surface layer. On the other hand, the role of retained austenite was significant only for the wear test under a light load.  相似文献   

15.
Abstract

Chip segmentation and the tool forces involved during cutting of hardened steel are discussed. AISI 4340 steel was machined on an engine lathe to study chip morphology, tool forces, and the surface generated. It was found that chip segmentation occurs when the hardness of the steel exceeds a certain value, and that the tool forces associated with chip segmentation are very high. A transformed layer of untempered martensite and retained austenite was produced when the cutting conditions were severe.

MST/469  相似文献   

16.
A WC–12%Co coating was thermally sprayed on a 52100 steel substrate and subsequently friction stir processing (FSP) was performed on this layer. The wear resistance and hardness was compared before and after FSP. Optical and SEM revealed that FSP intermixes the sprayed layer with the substrate, reduces porosity, and enhances both hardness and wear performances. 3D profilometry mapping was conducted to evaluate the wear track depth and its morphology. Refined grain structures and a martensitic structure with retained austenite are promoted by the FSP treatment. This leads to formation of new intermetallic and carbides which were detected by X-ray diffraction, thus accounting for the increased hardness and improved wear resistance.  相似文献   

17.
A layer of AerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100/300 M material were systematically investigated. Results show that the composition of the AerMet100 clad layer is macroscopically homogeneous, and a compositional transition zone with width of 150 μm is observed between the clad layer and heat affected zone. Microstructures in transition zone transform from the fine needle-like bainite in 300 M steel to the lath tempered martensite in AerMet100 clad layer. Microstructures in heat affected zone also gradually change from the thick plate bainite and blocky retained austenite (unstable heat affected zone) to fine needle-like bainite and film-like austenite (stable heat affected zone) due to different thermal cycle processes. Thick plate bainite together with blocky retained austenite in unstable heat affected zone reduce the strength and ductility of AerMet100/300 M material. However, the tensile specimens, consisting of clad layer and stable heat affected zone, show slightly inferior mechanical properties to 300 M steel. Ductile fracture exists in AerMet100 clad layer while quasi-cleavage fracture occurs in the stable heat affected zone.  相似文献   

18.
The effect of destabilisation and subcritical heat treatment on the impact toughness, hardness, and the amount and mechanical stability of retained austenite in a low carbon white cast iron have been investigated. The experimental results show that the impact energy constantly increases when the destabilisation temperature is raised from 950°C to 1200°C. Although the hardness decreases, the heat-treated hardness is still greater than the as-cast state. After destabilisation treatment at 1130°C, tempering at 200 to 250°C for 3 hours leads to the highest impact toughness, and secondary hardening was observed when tempering over 400°C. The amount of retained austenite increased with the increase in the destabilisation temperature, and the treatment significantly improves the mechanical stability of the retained austenite compared with the as-cast state. Tempering below 400°C does not affect the amount of retained austenite and its mechanical stability. But the amount of retained austenite is dramatically reduced when tempered above 400°C. The relationship between the mechanical properties and the microstructure changes was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号