首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于辅助输出的线性系统状态和未知输入同时估计方法   总被引:1,自引:0,他引:1  
韩冬  朱芳来 《自动化学报》2012,38(6):932-943
在未知输入观测器匹配条件不满足的情况下, 针对一类线性时不变系统, 研究了同时估计系统 状态和未知输入的问题. 首先, 基于可测输出对未知输入的相关度的概念, 给出了辅助输出 的构造方法, 使得匹配条件得以满足. 为了处理辅助输出中的未知信息, 提出了一种高增益 观测器设计方法, 它不仅能估计辅助输出, 而且还能估计辅助输出的导数. 然后, 基于辅助 输出的估计值, 提出了一种降维观测器设计方法, 可以在不受未知输入影响的情况下估计系统 的状态; 接下来, 基于状态和辅助输出及其导数的估计值, 给出了未知输入估计. 最后, 对一个五 阶系统进行了数字仿真, 仿真结果表明所提出的方法是有效的.  相似文献   

2.
In this article, a full-order observer without unknown inputs reconstruction is suggested in order to achieve finite-time reconstruction of the state vector for a class of linear systems with unknown inputs. The observer is a simple one, its derivation being direct and easy. It will be shown that the problem of full-order observers for linear systems with unknown inputs can be reduced in this case to a standard one (the unknown input vector will not interfere in the observer equations). The effectiveness of the suggested design algorithm is illustrated by a numerical example (aircraft longitudinal motion), and, for the same aircraft dynamics, we make a comparison between our new observer and other already existing observers from the existence conditions and dynamic characteristics’ point of view; the superiority of the new designed observer is demonstrated.  相似文献   

3.
A robust high gain observer for state and unknown inputs/faults estimations for a special class of nonlinear systems is developed in this article. Ensuring the observability of the faults/unknown inputs with respect to the outputs, the faults can be estimated from the sliding surface. Under a Lipschitz condition for the nonlinear part, the high gain observers are designed under some regularity assumptions. In the sliding mode, the convergence of the estimation error dynamics is proven similar to the analysis of high-gain observers.  相似文献   

4.
在故障诊断应用中, 状态方程中的未知参数和输出方程中的未知参数分别表征执行机构故障和传感器故障, 所以研究状态方程和输出方程同时含有未知参数的自适应观测器有着实际的应用意义. 本文基于高增益观测器和自适应估计理论, 针对状态方程和输出方程同时含有未知参数的一类一致可观的非线性系统, 用构造性方法设计了一种联合估计状态和未知参数的自适应观测器. 该自适应观测器的参数估计采用时变增益矩阵, 结构形式及参数设置简单. 给出了使该自适应观测器满足全局指数收敛性的持续激励条件, 并在理论上简洁地证明了该自适应观测器的全局指数收敛性. 数值仿真结果表明该自适应观测器具有良好的快速收敛性、跟踪性等期望性能.  相似文献   

5.
An adaptive fuzzy decentralized backstepping output-feedback control approach is proposed for a class of nonlinear large-scale systems with completely unknown functions,the interconnections mismatched in control inputs,and without the measurements of the states.Fuzzy logic systems are employed to approximate the unknown nonlinear functions,and an adaptive high-gain observer is developed to estimate the unmeasured states.Using the designed high-gain observer,and combining the fuzzy adaptive control theory with backstepping approach,an adaptive fuzzy decentralized backstepping output-feedback control scheme is developed.It is proved that the proposed control approach can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded(SUUB),and that the observer errors and the tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Finally,a simulation example is provided to show the eectiveness of the proposed approach.  相似文献   

6.
Sliding-mode observers can be constructed for systems with unknown inputs if the so-called observer matching condition is satisfied. However, most systems do not satisfy this condition. To construct sliding-mode observers for systems that do not satisfy the observer matching condition, auxiliary outputs are generated using high-gain approximate differentiators and then employed in the design of sliding-mode observers. The state estimation error of the proposed high-gain approximate differentiator based sliding-mode observer is shown to be uniformly ultimately bounded with respect to a ball whose radius is a function of design parameters. Finally, the unknown input reconstruction using the proposed observer is analyzed and then illustrated with a numerical example.  相似文献   

7.
A global observer is designed for strongly detectable systems with unbounded unknown inputs. The design of the observer is based on three steps. First, the system is extended taking the unknown inputs (and possibly some of their derivatives) as a new state; then, using a global high-order sliding mode differentiator, a new output of the system is generated in order to fulfil, what we will call, the Hautus condition, which finally allows decomposing the system, in new coordinates, into two subsystems; the first one being unaffected directly by the unknown inputs, and the state vector of the second subsystem is obtained directly from the original system output. Such decomposition permits designing of a Luenberger observer for the first subsystem, which satisfies the Hautus condition, i.e. all the outputs have relative degree one w.r.t. the unknown inputs. This procedure enables one to estimate the state and the unknown inputs using the least number of differentiations possible. Simulations are given in order to show the effectiveness of the proposed observer.  相似文献   

8.
针对一类不满足观测器匹配条件的线性系统,讨论了未知输入观测器设计方法.首先,为了突破观测器匹配条件的限制,提出了一种与未知输入相对阶无关的辅助输出构造方法.然后,把未知输入看作系统状态的一部分,将原系统转化为一个不含未知输入的增维线性描述系统.针对这样的系统转化,对一系列等价前提条件进行了详细的讨论.之后,针对该增维线性描述系统,构造Luenberger观测器来估计原系统的状态和未知输入.同时,借助于高阶滑模微分器,来估计辅助输出中的未知信号.最后,对一个单连杆柔性机械手模型进行了数值仿真,仿真结果表明了方法的有效性.  相似文献   

9.
研究采样数据(sampled-data,SD)系统最优诊断观测器的直接设计方法.首先从传递函数角度分析一般离散时间系统诊断观测器的Luenberger条件,由此构造出SD诊断观测器,并推导出其混杂动态关系.然后将SD故障检测问题定义为一个特定的比值型优化问题,并应用互内外分解法和代数方法构制其最优诊断观测器,使得产生的离散时间残差对连续时间未知输入具有鲁棒性,但对故障却是敏感的.仿真结果验证了所提设计方法的有效性.  相似文献   

10.
This paper proposes a novel adaptive observer for Lipschitz nonlinear systems and dissipative nonlinear systems in the presence of disturbances and sensor noise. The observer is based on an H observer that can estimate both the system states and unknown parameters by minimising a cost function consisting of the sum of the square integrals of the estimation errors in the states and unknown parameters. The paper presents necessary and sufficient conditions for the existence of the observer, and the equations for determining observer gains are formulated as linear matrix inequalities (LMIs) that can be solved offline using commercially available LMI solvers. The observer design has also been extended to the case of time-varying unknown parameters. The use of the observer is demonstrated through illustrative examples and the performance is compared with extended Kalman filtering. Compared to previous results on nonlinear observers, the proposed observer is more computationally efficient, and guarantees state and parameter estimation for two very broad classes of nonlinear systems (Lipschitz and dissipative nonlinear systems) in the presence of input disturbances and sensor noise. In addition, the proposed observer does not require online computation of the observer gain.  相似文献   

11.
This paper addresses the problem of interval observer design for unknown input estimation in linear time-invariant systems. Although the problem of unknown input estimation has been widely studied in the literature, the design of joint state and unknown input observers has not been considered within a set-membership context. While conventional interval observers could be used to propagate with some additional conservatism, unknown inputs by considering them as disturbances, the proposed approach allows their estimation. Under the assumption that the measurement noise and the disturbances are bounded, lower and upper bounds for the unmeasured state and unknown inputs are computed. Numerical simulations are presented to show the efficiency of the proposed approach.  相似文献   

12.
Unmodeled dynamics exist in almost all applications of observers due to the impossibility of using exact and detailed models. It is highly desired that the observers can dominate the effects of unmodeled dynamics independently to prevent the state estimations from diverging and to get the precise estimations. Based on adaptive nonlinear damping, this paper presents a robust adaptive observer for multiple-input multiple-output nonlinear systems with unknown parameters, uncertain nonlinearities, disturbances and unmodeled dynamics. The observer only has one adaptive parameter no matter how high the order of the system is and how many unknown parameters there are. With the proposed observer, neither estimating the unknown parameters or solving linear matrix inequalities is needed. It is shown that the state estimation error is uniformly bounded and can be made arbitrarily small.  相似文献   

13.
In order to solve the state estimation problem for linear hybrid systems with periodic jumps and unknown inputs, some hybrid observers are proposed. The proposed observers admit a Luenberger‐like structure and the synthesis is given in terms of linear matrix inequalities (LMIs). Therefore, the proposed observer designs are completely constructive and provide some input‐to‐state stability properties with respect to unknown inputs. It is worth mentioning that the structure of the hybrid observers, as well as the structure of the LMIs, depends on some observability properties of the flow and jump dynamics, respectively. Then, in order to compensate the effect of the unknown inputs, a hybrid sliding‐mode observer is added to the Luenberger‐like observer structure, providing exponential convergence to zero of the state estimation error despite certain class of unknown inputs. The existence of the hybrid observers and the unknown input hybrid observer is guaranteed if and only if the hybrid system is observable and strongly observable, respectively. Some numerical examples illustrate the feasibility of the proposed estimation approach.  相似文献   

14.
In this paper the authors provide a solution to the noise sensitivity of high-gain observers. The resulting nonlinear observer possesses simultaneously (1) extended Kalman filter’s good noise filtering properties, and (2) the reactivity of the high-gain extended Kalman filter with respect to large perturbations.The authors introduce innovation as the quantity that drives the gain adaptation. They prove a general convergence result, propose guidelines to practical implementation and show simulation results for an example.  相似文献   

15.
16.
This paper presents an observer design technique for a newly developed non-intrusive position estimation system based on magnetic sensors. Typically, the magnetic field of an object as a function of position needs to be represented by a highly nonlinear measurement equation. Previous results on observer design for nonlinear systems have mostly assumed that the measurement equation is linear, even if the process dynamics are nonlinear. Hence, a new nonlinear observer design method for a Wiener system composed of a linear process model together with a nonlinear measurement equation is developed in this paper. First, the design of a two degree-of-freedom nonlinear observer is proposed that relies on a Lure system representation of the observer error dynamics. To improve the performance in the presence of parametric uncertainty in the measurement model, the nonlinear observer is augmented to estimate both the state and unknown parameters simultaneously. A rigorous nonlinear observability analysis is also presented to show that a dual sensor configuration is a sufficient and necessary condition for simultaneous state and parameter estimation. Finally, the developed observer design technique is applied to non-intrusive position estimation of the piston inside a pneumatic cylinder. Experimental results show that both position and unknown parameters can be reliably estimated in this application.  相似文献   

17.
In many physical systems, the system's full state cannot be measured. An observer is designed to reconstruct the state from measurements. Disturbances often contribute to the dynamics of the system, and the designed observer must account for them. In this paper, a modified sliding-mode observer (SMO), a robust observer, is proposed that combines the efficiency of a nonlinear observer with the robustness of an SMO. The estimation error is proven to converge to zero under natural assumptions. This improved observer is compared with an extended Kalman filter and an unscented Kalman filter, as well as a standard SMO for three different versions of heat equation: a linear, a quasi-linear, and a nonlinear heat equation. The comparisons are done with and without an external disturbance. The simulations show improved performance of the modified SMO over other observers.  相似文献   

18.
In this paper, a nonlinear observer is designed in order to estimate the lateral dynamics of motorcycles. A nonlinear model of motorcycle's lateral dynamics is considered and is transformed in a Takagi-Sugeno (TS) exact form. An unknown input (UI) nonlinear observer is then designed in order to reconstruct the state variables whatever the forward velocity variations. The observer convergence study is based on the Lyapunov theory. The boundedness of the state estimation error is guaranteed thanks to the Input to State Stability (ISS) property. The observer has been tested on a nonlinear multibody model.  相似文献   

19.
A reset adaptive observer (ReAO) is an adaptive observer consisting of an integrator and a reset law that resets the output of the integrator depending on a predefined reset condition. The inclusion of reset elements can improve the observer performance but it can also destroy the stability of the estimation process if the ReAO is not properly tuned. As contribution, a method to optimally tune the parameters and gains of the ReAO is presented. They are optimally chosen by solving the L2 gain minimization problem, which can be rewritten as an equivalent LMI problem. The effectiveness of the proposed method is checked by simulations comparing the results of an optimal ReAO with an optimal traditional adaptive observer.  相似文献   

20.
动力定位船舶自适应滑模无源观测器设计   总被引:1,自引:0,他引:1  
针对带有模型参数不确定性的动力定位船舶,提出一种动力定位船全速域自适应滑模无源观测器,解决了现有观测器只能应用于低速作业动力定位系统的问题.采用速度估计误差作为滑模面,设计切换自适应律估计模型不确定项上界,保证了观测器增益的有界性和系统鲁棒性.对速度估计回路的无源性进行了分析,并证明了观测器的稳定性.最后利用船舶动力定位系统半实物仿真平台,验证了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号