首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
We obtain some exact solutions of a generalized derivative nonlinear Schrödinger equation, including domain wall arrays (periodic solutions in terms of elliptic functions), fronts, and bright and dark solitons. In certain parameter domains, fundamental bright and dark solitons are chiral, and the propagation direction is determined by the sign of the self-steepening parameter. Moreover, we also find the chirping reversal phenomena of fronts, and bright and dark solitons, and discuss two different ways to produce the chirping reversal.  相似文献   

2.
The nonlinear Schrödinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation.In this paper we introduce parallel split-step Fourier methods for the numerical simulations of the coupled nonlinear Schrödinger equation that describes the propagation of two orthogonally polarized pulses in a monomode birefringent fibers. These methods are implemented on the Origin 2000 multiprocessor computer. Our numerical experiments have shown that these methods give accurate results and considerable speedup.  相似文献   

3.
We consider the propagation of weakly nonlinear, weakly dispersive waves in an inhomogeneous media within the framework of the variable-coefficient Korteweg-de Vries equation. An analytical formula with which to compute the energy transfer between neighboring solitary waves is derived. The resulting expression shows that the energy change in a variable KdV system is essentially due the two-wave mixing, contrary to the energy change in a nonlinear Schrödinger system, which results from the intrachannel four-wave mixing. By considering the case of Gaussian solitary wave solutions, we have determined the transfer of energy in the system analytically and numerically.  相似文献   

4.
5.
A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence of a horizontal electric field is investigated in (2+1)-dimensions. The equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a two-dimensional nonlinear Schrödinger equation. A three-wave resonant interaction for nonlinear excitations created from electrohydrodynamic capillary-gravity waves is observed to be possible in a dispersive medium with a self-focusing cubic nonlinearity. Under suitable conditions, the nonlinear envelope equations for the resonant interaction are derived by using multiple scales and inverse scattering methods, and an explicit three-wave soliton solution is discussed. Both the dynamic properties and the modulational instability of finite amplitude electrohydrodynamic wave are studied for the cubic nonlinear Schrödinger equation by means of linearized stability analysis and the nonlinear interaction coefficient. We show that the trajectories in phase space exhibit different behavior with the increase of nonlinear perturbations, and we determine the electric field and wavenumber ranges at which the original point is elliptic or hyperbolic, respectively. It is found also that the presence of the electric field in the equation modifies the nature of wave stability and soliton structures, and that the amplitude and width of the soliton are decreased and increased, respectively, when the electric field value increases.  相似文献   

6.
We briefly review a class of nonlinear Schrödinger equations (NLS) which govern various physical phenomenon of Bose-Einstein condensation (BEC). We derive formulas for computing energy levels and wave functions of the Schrödinger equation defined in a cylinder without interaction between particles. Both fourth order and second order finite difference approximations are used for computing energy levels of 3D NLS defined in a cubic box and a cylinder, respectively. We show that the choice of trapping potential plays a key role in computing energy levels of the NLS. We also investigate multiple peak solutions for BEC confined in optical lattices. Sample numerical results for the NLS defined in a cylinder and a cubic box are reported. Specifically, our numerical results show that the number of peaks for the ground state solutions of BEC in a periodic potential depends on the distance of neighbor wells.  相似文献   

7.
We present in this paper an original ab initio Maxwell-Schrödinger model and a methodology to simulate intense ultrashort laser pulses interacting with a 3D H+2-gas in the nonlinear nonperturbative regime under and beyond Born-Oppenheimer approximation. The model we present is the first one to our knowledge (excepted in [E. Lorin, S. Chelkowski, A. Bandrauk, A Maxwell-Schrödinger model for non-perturbative laser-molecule interaction and some methods of numerical computation, Proceeding CRM, vol. 41, American Mathematics Society, 2007], where a one-dimensional version is presented) to be totally nonperturbative, vectorial and multidimensional, taking into account ionization, and high order nonlinearities going far beyond classical nonlinear Maxwell or Schrödinger models. After a presentation of the model and a short mathematical study, we examine some numerical approximations for its computation. In particular, we focus on the polarization computation allowing an efficient coupling between the Maxwell and time dependent Schrödinger equations (TDSE), and on an efficient parallelization. Examples of numerical computations of high order harmonic generation and of electric field propagation are presented for one molecule and up to 512, thus highlighting cooperative effects in harmonic generation at high order.  相似文献   

8.
《国际计算机数学杂志》2012,89(5):1178-1185
Optical soliton propagation in an inhomogeneous highly dispersive media with a dual-power nonlinearity law is studied. The variable-coefficient nonlinear Schrödinger (NLS) equation describing the propagation in such media includes space-dependent coefficients of fourth-order dispersion, cubic–quintic nonlinearity, and attenuation. By means of a solitary wave ansatz, exact bright soliton solution is found. Importantly, we have found that it is always possible to express the propagation of bright soliton pulses, for any integer value of the exponent in the power law in the form of a power of hyperbolic secant function. All physical parameters in the soliton solution are obtained as a function of the space-dependent model coefficients. Note that, it is always useful and desirable to construct exact analytical solutions for the understanding of most nonlinear physical phenomena.  相似文献   

9.
In this work, a generalized time-dependent variable coefficients combined KdV–mKdV (Gardner) equation arising in plasma physics and ocean dynamics is studied. By means of three amplitude ansatz that possess modified forms to those proposed by Wazwaz in 2007, we have obtained the bell type solitary waves, kink type solitary waves, and combined type solitary waves solutions for the considered model. Importantly, the results show that there exist combined solitary wave solutions in inhomogeneous KdV-typed systems, after proving their existence in the nonlinear Schrödinger systems. It should be noted that, the characteristics of the obtained solitary wave solutions have been expressed in terms of the time-dependent coefficients. Moreover, we give the formation conditions of the obtained solutions for the considered KdV–mKdV equation with variable coefficients.  相似文献   

10.
In this paper, we study the simulation of nonlinear Schrödinger equation in one, two and three dimensions. The proposed method is based on a time-splitting method that decomposes the original problem into two parts, a linear equation and a nonlinear equation. The linear equation in one dimension is approximated with the Chebyshev pseudo-spectral collocation method in space variable and the Crank–Nicolson method in time; while the nonlinear equation with constant coefficients can be solved exactly. As the goal of the present paper is to study the nonlinear Schrödinger equation in the large finite domain, we propose a domain decomposition method. In comparison with the single-domain, the multi-domain methods can produce a sparse differentiation matrix with fewer memory space and less computations. In this study, we choose an overlapping multi-domain scheme. By applying the alternating direction implicit technique, we extend this efficient method to solve the nonlinear Schrödinger equation both in two and three dimensions, while for the solution at each time step, it only needs to solve a sequence of linear partial differential equations in one dimension, respectively. Several examples for one- and multi-dimensional nonlinear Schrödinger equations are presented to demonstrate high accuracy and capability of the proposed method. Some numerical experiments are reported which show that this scheme preserves the conservation laws of charge and energy.  相似文献   

11.
The pseudospectral approach is a well-established method for studies of the wave propagation in various settings. In this paper, we report that the implementation of the pseudospectral approach can be simplified if power-series expansions are used. There is also an added advantage of an improved computational efficiency. We demonstrate how this approach can be implemented for two-dimensional (2D) models that may include material inhomogeneities. Physically relevant examples, taken from optics, are presented to show that, using collocations at Chebyshev points, the power-series approximation may give very accurate 2D soliton solutions of the nonlinear Schrödinger (NLS) equation. To find highly accurate numerical periodic solutions in models including periodic modulations of material parameters, a real-time evolution method (RTEM) is used. A variant of RTEM is applied to a system involving the copropagation of two pulses with different carrier frequencies, that cannot be easily solved by other existing methods.  相似文献   

12.
We consider for the integration of coupled nonlinear Schrödinger equations with periodic plane wave solutions a splitting method from the class of symplectic integrators and the multi-symplectic six-point scheme which is equivalent to the Preissman scheme. The numerical experiments show that both methods preserve very well the mass, energy and momentum in long-time evolution. The local errors in the energy are computed according to the discretizations in time and space for both methods. Due to its local nature, the multi-symplectic six-point scheme preserves the local invariants more accurately than the symplectic splitting method, but the global errors for conservation laws are almost the same.  相似文献   

13.
We propose a compact split-step finite difference method to solve the nonlinear Schrödinger equations with constant and variable coefficients. This method improves the accuracy of split-step finite difference method by introducing a compact scheme for discretization of space variable while this improvement does not reduce the stability range and does not increase the computational cost. This method also preserves some conservation laws. Numerical tests are presented to confirm the theoretical results for the new numerical method by using the cubic nonlinear Schrödinger equation with constant and variable coefficients and Gross-Pitaevskii equation.  相似文献   

14.
The nonlinear Schrödinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a true boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and, apparently for the first time, for an accurate quantitative assessment of the backscattered signal.  相似文献   

15.
We study soliton dynamics in a system of two linearly coupled discrete nonlinear Schrödinger equations, which describe the dynamics of a two-component Bose gas, coupled by an electromagnetic field, and confined in a strong optical lattice. When the nonlinear coupling strengths are equal, we use a unitary transformation to remove the linear coupling terms, and show that the existing soliton solutions oscillate from one species to the other. When the nonlinear coupling strengths are different, the soliton dynamics is numerically investigated and the findings are compared to the results of an effective two-mode model. The case of two linearly coupled Ablowitz–Ladik equations is also briefly discussed.  相似文献   

16.
In this paper, we propose a multi-symplectic splitting method to solve the coupled nonlinear Schrödinger (CNLS) equation by using the idea of splitting the multi-symplectic partial differential equation (PDE). Numerical experiments show that the proposed method can simulate the propagation and collision of solitons well. The corresponding errors in global energy and momentum are also presented to show the good preservation property of the proposed method during long-time numerical calculation.  相似文献   

17.
We pioneered the application of the quasilinearization method (QLM) to the numerical solution of the Schrödinger equation with singular potentials. The spiked harmonic oscillator r2+λrα is chosen as the simplest example of such potential. The QLM has been suggested recently for solving the Schrödinger equation after conversion into the nonlinear Riccati form. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. The choice of zero iteration is based on general features of solutions near the boundaries.We show that the energies of bound state levels in the spiked harmonic oscillator potential which are notoriously difficult to compute for small couplings λ, are easily calculated with the help of QLM for any λ and α with accuracy of twenty significant figures.  相似文献   

18.
In the framework of mapped pseudospectral methods, we use a polynomial-type mapping function in order to describe accurately the dynamics of systems developing small size structures. Using error criteria related to the spectral interpolation error, the polynomial-type mapping is compared against previously proposed mappings for the study of collapse and shock wave phenomena. As a physical application, we study the dynamics of two coupled beams, described by coupled nonlinear Schrödinger equations and modeling beam propagation in an atomic coherent media, whose spatial sizes differ up to several orders of magnitude. It is demonstrated, also by numerical simulations, that the accuracy properties of the polynomial-type mapping outperform by orders of magnitude the ones of the other studied mapping functions.  相似文献   

19.
Presented is quantum lattice-gas model for simulating the time-dependent evolution of a many-body quantum mechanical system of particles governed by the non-relativistic Schrödinger wave equation with an external scalar potential. A variety of computational demonstrations are given where the numerical predictions are compared with exact analytical solutions. In all cases, the model results accurately agree with the analytical predictions and we show that the model's error is second order in the temporal discretization and fourth order in the spatial discretization. The difficult problem of simulating a system of fermionic particles is also treated and a general computational formulation of this problem is given. For pedagogical purposes, the two-particle case is presented and the numerical dispersion of the simulated wave packets is compared with the analytical solutions.  相似文献   

20.
The numerical simulation of coupled nonlinear Schrödinger equations on unbounded domains is considered in this paper. By using the operator splitting technique, the original problem is decomposed into linear and nonlinear subproblems in a small time step. The linear subproblem turns out to be two decoupled linear Schrödinger equations on unbounded domains, where artificial boundaries are introduced to truncate the unbounded physical domains into finite ones. Local absorbing boundary conditions are imposed on the artificial boundaries. On the other hand, the coupled nonlinear subproblem is an ODE system, which can be solved exactly. To demonstrate the effectiveness of our method, some comparisons in terms of accuracy and computational cost are made between the PML approach and our method in numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号