共查询到20条相似文献,搜索用时 101 毫秒
1.
以六水合硝酸钴、苯甲酰丙酮为原料,利用微波法合成了Co_3O_4花球前驱体,并在500℃空气条件下锻烧得到不规则Co_3O_4花球。通过XRD、SEM、TEM对不规则Co_3O_4花球的微观结构和表面形貌进行了表征。电化学测试结果表明,不规则Co_3O_4花球负极材料在0.1 A/g的电流密度下,首次充电比容量达到816 m A·h/g,循环100圈后,比容量保持率为89.2%;倍率性能测试结果表明,电流密度从0.1 A/g增加到1 A/g时,比容量有一定的衰减,但电流密度恢复到0.1 A/g时,比容量几乎恢复到原来的水平;阻抗测试结果表明,不规则Co_3O_4花球负极材料循环前内阻为335Ω,50圈循环后内阻减小到240Ω。制备的不规则Co_3O_4花球具有较高的充电比容量、良好的循环性能和倍率性能。 相似文献
2.
以六水合硝酸钴(Co(NO3)2?6H2O)、苯甲酰丙酮(C10H10O2)为原料, 利用微波法合成了前体。前体在500℃空气条件下锻烧得到无定形Co3O4花球。通过 XRD、 SEM、TEM对目标产物进行了表征 , 研究了无定形Co3O4花球的微观结构、表面形貌。电化学测试结果表明,无定形Co3O4花球负极材料 在100mA/g的电流密度下,首次充电比容量达到826mAh/g;循环100圈后,容量保持率为89.2%,具有高的比容量、良好的循环性能和广泛的应用前景。 相似文献
3.
4.
5.
Co_3O_4纳米阵列因其特有的性质、丰富的3D结构、多样的形貌、独特的表面界面效应和良好的稳定性等在能量转换与存储、光电催化、气体传感等诸多领域中具有广泛的应用前景而得到广泛研究。对近年来有关Co_3O_4纳米阵列的制备方法、及其阵列材料在电催化分解水、能量存储与转换、电催化氧还原、光电催化二氧化碳还原、气体传感、一氧化碳氧化、非酶电催化葡萄糖、电磁吸收、疏水分离及有机物降解等研究领域的应用进行了综述。最后,对Co_3O_4纳米阵列发展过程中尚待解决的问题进行了总结,并对其未来的发展方向进行了展望。 相似文献
6.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。 相似文献
7.
以FeCl_3·6H_2O、乙酸钠、Zn(NO_3)_2·6H_2O、2-甲基咪唑为主要原料,通过水热法合成磁性金属有机骨架材料(Fe_3O_4@ZIF-8),对其进行了FTIR、VSM、SEM、TEM和EDS表征。以材料作为药物载体负载四环素,以负载量作为主要评价指标,考察了振荡时间、Fe_3O_4@ZIF-8用量、四环素溶液pH、四环素初始质量浓度对四环素负载量的影响。结果显示:在涡旋振荡90 s、pH=9、Fe_3O_4@ZIF-8用量5 mg、四环素质量浓度30 mg/L条件下,四环素饱和负载量达到12.296 mg/g。重复利用实验结果表明,Fe_3O_4@ZIF-8材料至少可以重复利用6次。 相似文献
8.
以六水合硝酸钴为钴源、二甲基咪唑为有机配体,通过室温共沉淀法合成前驱体模板ZIF-67,而后再高温煅烧形成目标产物Co3O4材料。利用X-射线衍射与扫描电镜对目标产物进行表征,而后选用蓝电电池测试系统测试其倍率与循环性能。测试表明,在100mA/g电流密度条件下,Co3O4电极的首次充电容量和放电容量分别可有2069.2mAh/g和2928.3mAh/g,首次库伦效率有70.66%,循环使用寿命长,但容量维持率低,经100圈测试后容量保持率仅有35%;而在倍率测试中发现即使经过50次充放电,电流密度从2000mA/g回到100mA/g时,Co3O4电极的放电容量依然可以保持有1482mA/g,并且表现出良好的循环稳定性,说明Co3O4即使经过高倍率充放电,其结构依然可以保持稳定,具有较为不错的倍率性能。 相似文献
9.
10.
11.
12.
纳米Fe_3O_4具有良好的比表面积、超顺磁等特点而得到科学工作者广泛的关注。简述了纳米Fe_3O_4的制备方法,综述了其在生物医学领域的研究进展,对其发展前景做出了展望。 相似文献
13.
14.
15.
16.
采用水热法以不同的填装度分别在泡沫镍和碳纤维基底上制备出了不同形貌的Co_3O_4。运用X射线衍射、红外光谱和扫描电镜对产物的结构和形貌进行表征。结果表明,在水热反应体系中,通过改变装填度大小,可以制备出相同物相、不同形貌的产物。通过循环伏安法、恒流充放电和交流阻抗法对泡沫镍基底Co_3O_4电极材料的电化学特性进行表征。结果表明,在填装度为70%时制备出的Co_3O_4均匀纳米簇阵列,表现出更好的电容特性。在2 mol/L的KOH电解液中,1 A/g的电流密度下,其比电容为961 F/g;当电流密度增至20 A/g时,比电容保持率为76%。 相似文献
17.
18.
19.
20.
以Bi(NO3)3·5H2O、Co(CH3COO)2·4H2O为原料,采用化学沉淀-水热法制备了Co3O4-Bi2O2CO3异质结构复合半导体光催化剂,并通过X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(DRS)、荧光光谱(PL)等手段对所合成的复合型催化剂进行了理化性能表征。研究结果表明:引入Co3O4没有改变Bi2O2CO3物相结构,但促进了Bi2O2CO3 对可见光的吸收能力,提高了Bi2O2CO3表面吸附氧物种的数量,抑制了光生载流子复合。复合光催化剂对罗丹明B(RhB)的光催化脱色实验显示引入Co3O4能够明显提高Bi2O2CO3催化剂的光催化脱色能力。尤其是Co3O4引入量为0.6%的Co3O4-Bi2O2CO3样品对罗丹明B染料的光催化脱色率可达到97%(模拟日光照射30min)。本文为复合型光催化剂制备提供了简单易行的技术路线,制备的新型半导体复合光催化剂Co3O4-Bi2O2CO3在环境净化方面表现出了较好的应用前景。 相似文献