首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and magnetic properties of polycrystalline ceramics of Zn1?x Cr x O (x=0.01–0.10) annealed at 900 and 1200 °C were systematically investigated by means of X-ray diffractometer, electron spin resonance (ESR) spectroscopy, and a superconducting quantum interference device magnetometer. A coexistence of two structural phases of wurtzite-ZnO and spinel-ZnCr2O4 was found even in the samples with the lowest Cr-doping concentration of 1 at.%. Our experimental results have indicated that Cr ions are incorporated into the Zn site of the ZnO host lattice, and act as paramagnetic centers. Higher annealing temperature enhances the formation tendency of ZnCr2O4, and the proportion of Cr2+ relative to Cr3+ in ZnO. This results in the broadening of ESR spectral line. Dipole exchange interactions due to Cr3+–Cr3+, Cr3+–Cr2+, and Cr2+–Cr2+ pairs are assigned to be responsible for the ESR signals and paramagnetic behavior of Zn1?x Cr x O samples.  相似文献   

2.
In this paper, cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) nanoparticles (NPs) have been prepared using chemical co-precipitation method. In order to investigate the annealing induced effects on their various physical properties, the prepared samples have been annealed at 500 °C, 650 °C and 1000 °C and then compared with as-prepared sample. X-ray diffraction (XRD) patterns of as-prepared and annealed samples at various temperatures exhibit single phase spinel structure. Enhancement in crystallinity and crystallite size is observed with the increase in annealing temperature. The annealing has also greatly influence the morphology and grain size of prepared NPs. The Co0.5Zn0.5Fe2O4 NPs have shown remarkable enhancement in magnetic moment with increase in annealing temperature. The bandgap energies of Co0.5Zn0.5Fe2O4 NPs have been measured via UV Spectrometer and observed to decrease with annealing temperature. FTIR spectra of the samples reveal the presence of both high frequency and low-frequency bands due to tetrahedral and octahedral sites, which corroborate well with the XRD results. The observed characteristics of cobalt zinc ferrite NPs as a function of annealing temperature are the rising contender for many data storage and nanodevice applications. Finally, the genotoxicity of prepared nanoferrites has been checked via comet assay.  相似文献   

3.
The decomposition of the freeze dried Cu(II)-Ni(II)-Fe(III) formate precursors at 1000°C in air yields complex oxides CuxNi1−xFe2O4±δ (0 ≤ x ≤ 1) with a cubic spinel structure. For x < 0.7, single phase spinels are formed at 1000°C. However, for 0.7 ≤ x ≤ 1, Copper oxide (CuO) is identified as a second phase and the formation of a pure spinel phase requires an increase of the iron content in the mixture. For example, Cu0.81Ni0.1Fe2.09O4 is a single phase at 1000°C/air. Other single spinel phases Cu0.5+yNi0.5−y−zFe2+zO4±δ, 0 ≤ (y + z) ≤ 0.5, in the phase triangle Cu0.5Ni0.5Fe2O4–CuFe2O4–Cu0.5Fe2.5O4 have been synthesized under special p(O2)/T—synthesis conditions. The increase of the iron content requires an increase of the reaction temperature and/or a decrease of the p(O2) in the reaction gas stream. The oxygen exchange between Cu0.9Fe2.1O4.02 and the reducing gaseous phases shows that the non stoichiometry δ of copper ferrite is only about ±0.03. Significant changes in the oxygen content lead to the separation in different phases. The electrical and magnetic properties of copper ferrite samples depend on their chemical composition and preparation conditions.  相似文献   

4.
Co0.5Cu0.3Ni0.2Al x Fe2?x O4 (x = 0, 0.07, 0.14, and 0.21) rods of large-area arrays are synthesized by a solvothermal method, followed by calcination in air. The samples are characterized by powder X-ray diffraction, FT-IR spectra, scanning electron microscope, and vibrating sample magnetometer. The effect of diamagnetic Al3+ ion substitution and calcination temperature on the structure, morphology, and magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2?x O4 has been investigated. The results indicate that high-crystallized cubic Co0.5Cu0.3Ni0.2Al x Fe2?x O4 rods of large-area arrays are obtained when the precursors are calcined at 750 °C in air for 3 h. The crystallite size of Co0.5Cu0.3Ni0.2Al x Fe2?x O4 increases with the increase in Al3+ content, attributed to the decrease in lattice strain in Co0.5Cu0.3Ni0.2Al x Fe2?x O4 with the increase in Al3+ content. The lattice parameters of Co0.5Cu0.3Ni0.2Al x Fe2?x O4 slightly increase with the increase in Al3+ content. This is due to the transformation from cubic NiFe2O4 phase to cubic CoFe2O4 phase after doping Al3+ ion. Al3+ substitution can improve the magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2?x O4. Co0.5Cu0.3Ni0.2Al0.14Fe1.86O4, calcined at 950 °C, has the highest specific saturation magnetization (86.36 ± 2.25 emu/g) and magnetic moment (3.586 ± 0.093 μ B ). Co0.5Cu0.3Ni0.2Al0.21Fe1.79O4, calcined at 950 °C, has the highest initial permeability (17.216 ± 0.448). The results are explained by Neel’s two sublattices.  相似文献   

5.
Mn1?xZnxFe2O4 (x?=?0.2–0.8) ferrite samples were successfully prepared by the sol–gel method. X-ray diffraction study reveals that single cubic spinel phase was formed in Mn1?xZnxFe2O4 samples. The SEM micrographs revealed that the microstructures change significantly with different Zn2+ doping concentration and sintering temperature while the grain size grow up to 9.48 μm for Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C. Further, the dielectric and magnetic measurements indicated that both Zn2+ doping and sintering temperature could affect both electrical and magnetic parameters such as dielectric constant and saturation magnetization in a great manner. The Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C for 8 h is found to show the largest M s value (77.30 emu/g) in this work. These results indicate that Zn2+ doping or sintering temperature can adjust the microstructures, dielectric and magnetic properties of Mn1?xZnxFe2O4 ferrites.  相似文献   

6.
Nanocrystalline nickel–zinc ferrites Ni x Zn1−x Fe2O4 thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)Fe2 alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)Fe2 alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for Ni0.5Zn0.5Fe2O4 thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol.  相似文献   

7.
Ni0.5Zn0.5Fe2O4 ferrite nanocrystals with average diameter in the range of 1–2 nm have been synthesized by reverse microemulsion. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) are used to characterize the structural, morphological and magnetic properties. X-ray analysis showed that the nanocrystals possess cubic spinel structure. The absence of hysteresis, negligible remanence and coercivity at 300 K indicate the superparamagnetic character and single domain in the nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite materials. The nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite were annealed at 600 °C. As a result of heat treatment the average particle size increases from 2 nm to 5 nm and the corresponding magnetization values have increased to 21.69 emu/g at 300 K. However, at low temperature of 100 K, the annealed samples show hysteresis loop which is the characteristic of a superparamagnetic to ferromagnetic transition. In addition, a comparative study of the magnetic properties of Ni0.5Zn0.5Fe2O4 ferrite nanocrystals obtained from reverse microemulsion has been carried out with those obtained from the general chemical co-precipitation route.  相似文献   

8.
Ba(LaZn) x Fe12?2x O19 (0≤x≤0.5) powders with Bi2O3 as an additive was synthesized by a sintered route at 900 °C or 950 °C. The structure and magnetic properties of La–Zn substituted M-type barium ferrites were also investigated. When 0≤x≤0.5, only one crystal phase existed in the sample, and the morphology of the grains were shown to be gradually irregular. The little amount of La3+ ions and Zn2+ ions changed the equilibrium of Fe2+ and Fe3+ at the 2a site, which increased the Fe3+–O–Fe2+ superexchange interaction strength, and the saturation magnetization (Ms) of the samples was also improved. Meanwhile, the substitution of La3+ and Zn2+ ions and the grains’ size bought great effects on the magnetocrystalline anisotropy field. As a result, with sintering at 950 °C for 6 h, the max Ms value of the samples with x=0.1 was 67.26 emu/g, and the minimum coercivity (H c ) value was 1718.89 Oe with x=0.3, respectively.  相似文献   

9.
A conducting polymer, polyaniline (PANI)/Ni0.5Zn0.5Fe2O4 composites with high dielectric absorbing properties and electromagnetic shielding effectiveness at low frequencies were successfully synthesized through a simple in situ emulsion polymerization. PANI was doped with hydrochloric acid to improve its electrical properties and interactions with ferrite particles. PANI/Ni0.5Zn0.5Fe2O4 composites were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Frequency dependence of dielectric and ac conductivity (σac) studies have been undertaken on the PANI/Ni0.5Zn0.5Fe2O4 composites in the frequency range 50 Hz–5 MHz. The electrical conduction mechanism in the PANI/Ni0.5Zn0.5Fe2O4 is found to be in accordance with the electron hopping model. Further, frequency dependence of electromagnetic interference (EMI) shielding effectiveness (SE) is studied. The EMI shielding effectiveness is found to decrease with an increase in the frequency. The maximum value 55.14 dB of SE at 50 Hz was obtained at room temperature for PANI/Ni0.5Zn0.5Fe2O4 composites in the 50 Hz–5 MHz frequency range. PANI/Ni0.5Zn0.5Fe2O4 composites were demonstrated as a promising functional material for the absorbing of electromagnetic waves at low frequencies because of a large amount of dipole polarizations in the polymer backbone and at the interfaces of the Ni–Zn ferrite particles and PANI matrix.  相似文献   

10.
Mg–Zn ferrite powder specimens with the nominal composition Mg0.5Zn0.5Cr x Fe2?x O4 (x = 0.0–1.0 with steps of 0.2) were synthesized via hydrothermal method. It is found that all the specimens exhibit a typical spinel structure, and the lattice parameter increases slightly with x, which confirms the substitution of Cr3+ for Fe3+. The average crystallite size first increases but then decreases with x, which is not the same as the results in previous reports on spinels. The particles in specimens are the aggregate of small nanoscale crystallites, and roughly aggregate more extensively with the increasing Cr content. With the increase of x, the saturation magnetization decreases rapidly, and it becomes more and more difficult for the specimens to magnetize to saturation. The increase of coercivity from 0.6 (x = 0.0) to 32.3 kA m?1 (x = 1.0) shows a transition from a typical soft magnetic behavior to a hard magnetic behavior with the increase of Cr content, which was not reported before.  相似文献   

11.
H2/CO2 cycle reaction activities of spinel structure NiFe2−x Cr x O4 (x = 0, 0.08) prepared by co-precipitation were determined. The results showed that pure NiFe2O4 had almost lost its CO2 decomposition activities after 15 cycles, while Cr3+ doped NiFe2O4 still had about 40% of the initial reaction activity value after 50 reaction cycles. The magnetic properties of samples annealed at 350 °C indicated that M s and M r decreased from 32.49 to 26.04 emu/g and 9.39 to 7.31 emu/g, respectively, but H c increased from 230 to 1800 Oe with the increasing of Cr3+content. XRD Rietveld analysis showed that there appeared 23.15% Fe y Ni1−y (0<y < 1) and no Fe3C in pure NiFe2O4 system after the first H2/CO2 cycle reaction. With the increasing of cycle times, the phase abundance of NiFe2O4 decreased rapidly. At the same time, Fe3C appeared and its content increased fast. After 15 cycles, the phase abundance of NiFe2O4 is less than 5%wt, but those of Fe y Ni1−y (0 < y < 1) and Fe3C enhanced to 48.15 %wt and 46.92 %wt, respectively. However, the cycle reaction life of NiFe2−x Cr x O4 (x = 0.08) was much longer than NiFe2O4. The spinel structure stability was improved dramatically because of the existing of Cr3+ in the cell of NiFe2O4. After 50 cycles, the phase abundance of NiFe2O4 still had 20 %wt.  相似文献   

12.
Nanocrystalline powders of Ni1?xZnxFe2O4 (0  x  0.5) mixed ferrites, with cubic spinel structure and average crystallite size ranging from 28 to 42 nm, were synthesized by the ethylene glycol mediated citrate sol–gel method. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and microstructure by transmission electron microscopy (TEM). The response of prepared Ni1?xZnxFe2O4 mixed ferrites to different reducing gases (liquefied petroleum gas, hydrogen sulfide, ethanol gas and ammonia) was investigated. The sensor response largely depends on the composition, temperature and the test gas species. The Zn content has a significant influence on the gas-sensing properties of Ni1?xZnxFe2O4. Especially, Ni0.6Zn0.4Fe2O4 composition exhibited high response with better selectivity to 50 ppm H2S gas at 225 °C. Incorporation of palladium (Pd) further improved the response, selectivity and response time of Ni0.6Zn0.4Fe2O4 to H2S with the shift in the operating temperature towards lower value by 50 °C. The enhanced H2S sensing properties can mainly be attributed to the selectivity to oxidation of H2S and noble metal additive sensitization. Furthermore, the sensor exhibited a fast response and a good recovery.  相似文献   

13.
The spinel system FexZn1?xCr2S4 with 0 ≦ x ≦ 1 has been prepared in polycristalline form. All samples are p type semiconductors. I.R. spectra have been measured between 200 cm?1 and 600 cm?1. Room temperature 57Fe-Mössbauer spectra show the typical behaviour of tetrahedral site Fe(II) surrounded by different octahedral site neighbours. In comparison with Mössbauer spectra of the spinel system Fe1+xCr2?xS4 the distribution, 0.01 < y < 0.02, is derived.  相似文献   

14.
In this paper the effect of sintering temperature on Ni0.5Zn0.5Fe2O4 is examined closely. The evolution of toward magnetically ordered materials was to be tracked with the parallel evolving microstructure subjected to sintering temperatures in an ascending order. The starting powder of Ni0.5Zn0.5Fe2O4 was prepared via mechanical alloying and later molded into toroidal samples. After each sintering, we observed the resulting changes in the materials. The XRD data showed a single phase being formed as early as 600 °C and the peak intensity was increasing with the sintering temperature indicating an increase in the degree of crystallinity. The BH hysteresis loops showed the evolution from paramagnetism to moderate ferromagnetism to strong ferromagnetism with microstructural changes. For lower sintering temperatures, the samples showed paramagnetic behavior dominating the samples. As sintering temperature increased, paramagnetic states decreased and, at 900 °C, a moderately ferromagnetic state appeared. Sintering at 1000 °C produced a strongly ferromagnetic state giving a well-formed sigmoid-shape hysteresis loop.  相似文献   

15.
《Materials Letters》2006,60(21-22):2728-2732
The chromium substituted barium hexaferrites were prepared by self-propagating combustion method. The crystalline structure, complex permittivity, complex permeability, and hyperfine parameters of BaFe12−xCrxO19 (x varies from 0.2 to 1.0 in a step of 0.2) were measured with X-ray diffraction, vector network analyzer and Mössbauer spectroscopy. At 850 °C, only a part of Cr3+ ions are permitted to enter the lattice of barium ferrite. With further calcination at 1000 °C, all Cr3+ ions enter the lattice. After substitution, the complex permittivity is increased. The Cr3+ ions substitute for the Fe3+ ions on the 2a site, and simultaneously lead to a quadrupole splitting on the 4f1 site. These changes decrease the anisotropy field, which are accordant with the spectra of μ″. In the crystalline cells of the substituted barium ferrites, some Fe2+ ions are formed. It results in a bigger dielectric loss.  相似文献   

16.
Ni–Zn ferrite compositions (Ni1?x Zn x Fe2O4) are well known due to their remarkable soft magnetic properties, which potentially have a broad range of applications in many areas. In this study, Ni–Zn ferrite with the chemical formula of Ni0.64Zn0.36Fe2O4 was prepared by the glycine-nitrate autocombustion process (GNP) and solid state reaction method (SSRM). In order to achieve a desirable particle size, the SSRM powders were milled for 3 h at a milling rate of 200 rpm. The structure and magnetic properties of the ferrite powders, which were synthesized by both methods, were characterized and their properties were compared. The results indicate that a significant amount (~?90 wt.%) of nanocrystalline Ni0.64Zn0.36Fe2O4 ferrite with the average crystallite size of 47 nm, particle size of 200 nm, saturation magnetization of 73 emu/g and coercivity of 54 Oe has been formed by means of the glycine-nitrate process. The results also show that not only the saturation magnetization of the GNP ferrite powder is relatively similar to that of the milled SSRM powders, but also it is synthesized at a much shorter duration than that of the solid state reaction method.  相似文献   

17.
In this paper, the wurtzite-type Zn1?xCrxS nanobelts (NBs) were obtained by a simple hydrothermal process with the ethanol amine as the oriented-assembly agent at 180 °C. The results showed that the Cr3+ ions substituted for the Zn2+ sites in the host zinc sulfide (ZnS), and the maximum concentration of the Cr3+ ions in the ZnS NBs was 4.80 %. The Zn1?xCrxS NBs were constructed by the nanowires, and the growth mechanism of the NBs was investigated in detail. The Zn1?xCrxS NBs showed the ferromagnetism property at room temperature and the magnetic saturation value was increased as the Cr3+ doped ratio increased.  相似文献   

18.
We study the structure and composition of scales formed during the contact of Fe–13Cr–2Motype ferritic steels hardened with oxides TiO2 and Y2O3 with oxygen-containing (10−3 mass% O) lead melt at 550°C for 1000 h. It is established that a Fe3 O4 – Fe (Fe1 − x , Cr x )2 O4 two-layer scale forms. Its upper layer (Fe3 O4) grows in the direction of the melt, and the internal layer (Fe (Fe1 – x , Cr x )2 O4) grows in the direction to the matrix. Oxide particles favor an increase in the porosity of the internal sublayer of the scale. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 44, No. 5, pp. 38 – 44, September–October, 2008.  相似文献   

19.
We report the magnetic properties of Mg x Mn1?x Fe2O4 (0??x??1.0) nanosize compounds with particle sizes between 8?nm and 15?nm. The evolutions of the properties as a function of composition have been investigated by X-ray diffraction, M?ssbauer, and SQUID magnetometry. Pure cubic spinel could be obtained under a low reaction temperature of 200°C in all the samples. Impurity phases have been observed in compounds annealed at above 900°C. Magnetic relaxation is observed in samples with particles of about 8?nm. The spectra with particle sizes larger than 10?nm could be fitted with at least two sextets attributed to Fe3+ ions on tetrahedral (A) and octahedral?(B) sites. The magnetization measurement indicates superparamagnetic behavior in nanosized compounds.  相似文献   

20.
In this work, Zn(1?x)CaxFe2O4 nanoparticles (x = 0, 0.5 and 1) have been synthesized by sol–gel method followed by heat treatment at a temperature within the range of 300–700 °C. The samples with appropriate saturation magnetization (Ms), low coercivity and remanence were Zn0Ca1Fe2O4 treated at 300 °C (Ms ~ 25 emu/g), Zn0Ca1Fe2O4 treated at 400 °C (Ms ~ 40 emu/g) and Zn0.50Ca0.50Fe2O4 treated at 400 °C (Ms ~ 31 emu/g). These samples were analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and transmission electron microscopy. The heating ability of selected nanoparticles was evaluated under a magnetic field using a solid state induction heating equipment. The obtained nanoferrites showed a particle size within the range of 13–14 nm. The Zn0Ca1Fe2O4 treated at 400 °C was able to heat the nanoferrite particles/water suspension (10 mg/2 ml) at a temperature of 44 °C under the selected magnetic field (10.2 kA/m and frequency 362 kHz). Additionally, in vitro bioactivity assessment was performed by immersing samples in a simulated body fluid for different periods of time at physiological conditions of pH and temperature. The samples showed an appropriate bioactivity. These nanoferrites are highly potential materials for hyperthermia treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号