首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of graphene doping on the phase formation and superconductivity of MgB2 bulks synthesized with different process have been studied systemically. Considering the scattering structure of graphene, coating method was applied to enhance the uniformity of graphene doping. The graphene coated B addition was expected to improve the critical current density of MgB2 bulks. In our study, several experiments were performed to find out the suitable way for graphene doping. The coating method could enhance the critical current density of MgB2 from 1.9 × 105 to 2.5 × 105 A/cm2 at 20 K and 0 T, compared with that of the undoped sample. And the superconductivity of MgB2 prepared by coating method got obvious improvement at high field compared with that of pure graphene doping bulk. It can be concluded that the coating method could ensure the uniformity of graphene doping in MgB2 and refined the grain crystalline effectively.  相似文献   

2.
Ultrafine nanostructured MgB2 bulks with an average grain size less than 10 nm have been fabricated by high-energy ball milling and subsequent high pressure sintering. Microstructural evolution in MgB2 subjected to high-energy ball milling has been investigated by means of X-ray diffraction (XRD). The finer grain size of MgB2 powders of about 7 nm has been estimated from Rietveld refinement analysis of XRD data, which is confirmed by a transmission electron microscope (TEM) observation. There is almost no grain growth in the subsequent sintering at low temperature of 600?°C under pressure of 3?C5 GPa for 10?C30 min. The nanocrystalline MgB2 bulks exhibit the lower onset critical transition temperatures (T c onset) of 32?C33?K. The relative wider width of the magnetic hysteresis loops at high external magnetic field and the higher critical current density (J c ) are obtained in nanocrystalline bulks. J c is as high as 105?A/cm2 in 8?T at 10?K and 2.7×103?A/cm2 in 4?T at 20?K.  相似文献   

3.
High-density cylindrical MgB2 superconductors were manufactured using an ex situ powder in tube extrusion technique. The superconducting properties of the steel-sheathed MgB2 samples were examined with respect to their magnetisation responses, critical temperature and current density. The critical current density of the superconductor was determined by means of magnetisation measurements using Bean’s critical state model. J c reached a maximum of 4×105 A/cm2 at 5 K.  相似文献   

4.
In this paper, we report the doping effects of succinic acid, C4H6O4 (from 0 to 30 wt%) on the lattice parameter, critical temperature (T c), critical current density (J c), upper critical field (H c2), and irreversibility field (H irr) in MgB2 superconductor. It was found that MgB2 doped with 10 wt% C4H6O4 and sintered at 900 °C exhibited excellent J c above 104 A?cm?2 at 5 K and 8 T. Impurity scattering due to C substitution, improved crystallinity and the least amount of MgO in 10 wt% doped sample improves J c very significantly. The MgO amount is rapidly increased in 20 and 30 wt% doped samples which causes a strong depression of J c, H c2, H irr due to poor inter and intra-grain connectivity.  相似文献   

5.
In this study, we report an enhancement of critical current density of bulk MgB2 superconductors by glutaric acid (C5H8O4) doping. The effects of glutaric acid doping on MgB2 lattice resulted in a record self-field J c of the order of 106 A/cm2. A simultaneous improvement in the connectivity, pinning force, and H c2 is the major factor that determined excellent J c performance. X-ray diffraction analysis showed that samples were single-phase MgB2 with a minor trace of impurities. A dramatic change in grain morphology and homogeneity in grain distribution was found in the SEM images of doped samples. We observed that homogeneity in grain distribution played a crucial role in the connectivity and the upper critical field (H c2) of the doped samples. We were able to introduce a new dopant through a two-step mixing approach which is suitable to overcome the degradation of low field and self-field J c reported for carbon-doped MgB2 superconductor samples.  相似文献   

6.
With the aim of improving the critical current density (J c ) in the MgB2 superconductor, minor Cu (3?at%) was doped to the MgB2 samples in-situ sintered with Mg powder and sugar-coated amorphous B powder. Combined with thermal analysis, phase identification, microstructure observation and J c measurement, the effect of minor Cu addition on the sintering mechanism, microstructure and critical current density of sugar-doped MgB2 superconductors were investigated. It is found that the minor Cu addition could obviously accelerated the MgB2 phase formation and improve the growth of MgB2 grains during the sintering process of sugar-doped MgB2 due to the appearance of Mg?CCu liquid at low sintering temperature. On the other hand, the Mg?CCu liquid hindered the reactive C released from sugar entering in the MgB2 crystal lattice. Hence, the connectivity between MgB2 grains was improved accompanying with the C substitution for B is decreased. At 20?K, the J c of co-doped samples at low fields was further increased whereas it is decreased at high fields, compared with the only sugar-doped samples.  相似文献   

7.
MgB2 thin films were deposited on MgO (100) substrate and r-plane Al2O3 $(1\bar{1}02)$ substrate by ex-situ annealing of boron film in magnesium vapor. The thickness of ex-situ annealed MgB2 films is approximately 600 nm according to data observation by ellipsometer. The magnetic properties of samples were determined using a vibrating sample magnetometer. The magnetic field dependence of the critical current density J c was calculated from MH loops and also the magnetic field dependence of F p was compared for the different temperature ranges from 5 to 25 K. The critical current density J c was found to be around 1.0×106 A/cm2 and 1.7×106 A/cm2 in zero field at 5 K for MgB2 films deposited on MgO and r-plane Al2O3 substrates, respectively. It was found that the critical current density of the film deposited on MgO became stronger than that of r-plane Al2O3 in the magnetic field. The superconducting transition temperature was determined by ac susceptibility measurement using physical properties measurement system. ac susceptibility measurements for MgB2 films deposited on MgO and r-plane Al2O3 substrates were performed as a function of temperatures at constant frequency and ac field amplitude in the absence of dc bias field. The critical current densities as a function of temperature were estimated from the ac susceptibility data.  相似文献   

8.
We chose high strength and high conductive Cu–Nb composite as strengthening core to improve the mechanical properties of 6-filament MgB2 wires. The Cu–Nb core become partially dispersion strengthened during the fabrications of the MgB2 wires. It has been found that this Cu–Nb composite offers good promise of increased strength while maintaining the superconducting properties of the MgB2 wire. The Young’s modulus of the best wire samples increased significantly to about 130 GPa, which is comparable to those of high strength ferromagnetic materials sheathed wires but without negative ferromagnetic effects. Those mechanical properties were enough to satisfy the low field application needs. The critical current I c also achieves 200 A (engineering critical current density, J ce above 1.30 × 104 A/cm2) at 20 K 1 T field. The 91-filament Cu–Nb composite core reinforced wires were fabricated by in situ Powder In Tube method.  相似文献   

9.
We report on the high critical current densities in MgB2 films directly grown on Hastelloy tapes without any buffer layer by using the hybrid physical-chemical vapor deposition method. MgB2 films were formed by reaction of Mg metal vapor with the incoming B2H6 gas on the heated substrates. In MgB2 films grown for 10 min at 500 °C in total working pressure 100 Torr with gas mixing ratio H2:B2H6=70:30, we observed the transport critical current density (J c) was approximately 106 A/cm2 at 4 T and 20 K in magnetic fields applied parallel to the substrate plane. This value is higher than those observed in epitaxial MgB2 films on sapphire substrates grown by using the same method. Magnetic field dependence of J c of this sample was well explained by the grain-boundary pinning model. Our result opens up a possibility that the coated conductors made of MgB2 films have a strong potential for high current applications.  相似文献   

10.
Bulk MgB2 samples containing Cu and Y2O3 have been prepared by conventional solid state reaction at 850 °C, and the structure and superconducting properties have been investigated. Differing from the structure in previous studies, a type of novel, layered structure was obtained in Cu/Y2O3-doped MgB2 sample. Furthermore, the critical current density (J c) at high field (>4 T) was improved compared to undoped, and Cu-doped MgB2 samples. After analyzing the phase composition, microstructure, and sintering process, it was found that Y2O3 and Cu are independent in providing effective pinning centers, and YB4 impurity should be responsible for the enhancement of J c as well as the increased irreversible magnetic field. However, J c at low field was slightly worsened, but still maintaining 105 A cm?2 at 0 T, since the intercrystalline connectivity was not seriously deteriorated. Finally, a possible growth model was put forward to describe the formation sequences of the layered structure. It was supposed that the formation of steps at low temperature originated from the coherent relationship between Mg and MgB2, while the steps formed at high temperature were related to the pinning effect of secondary phase during the migration of grain boundary.  相似文献   

11.
Superconducting MgB2 polycrystalline samples have been fabricated under two different conditions in order to determine the effect of MgB4 phase. A series of samples was placed in an α-alumina container closed with a cup and fired under high purity argon gas. The other series of samples was placed in an α-alumina boot without any lid and fired under similar conditions. For the first series of samples, we have found pure MgB2 phase formation and a narrow transition width at 0.4 K. For the second series of samples, significant amount of MgB4 phase were formed and the T zero was decreased to 27 K. For both the group of samples magnetization hysteresis loops obtained at various temperature range and applied field up to 2 T. The best J cmag for the first series of samples was 1.9 × 105 A/cm2 at 10 K and 0 T, and for the second series of samples was 0.7 × 104 A/cm2 at 10 K and 0 T.  相似文献   

12.
MgB2 thin films were fabricated on r-plane Al2O3 ( ${1} \overline{{1}} {0} {2})$ substrates. First, deposition of boron was performed by rf magnetron sputtering on Al2O3 substrates and followed by a post-deposition annealing at 850 °C in magnesium vapour. In order to investigate the effect of Fe2O3 nanoparticles on the structural and magnetic properties of films, MgB2 films were coated with different concentrations of Fe2O3 nanoparticles by spin coating process. The magnetic field dependence of the critical current density J c was calculated from the M–H loops and magnetic field dependence of the pinning force density, f p(b), was investigated for the films containing different concentrations of Fe2O3 nanoparticles. The critical current densities, J c, in 3T magnetic field at 5 K were found to be around 2·7 × 104 A/cm2, 4·3 × 104 A/cm2, 1·3 × 105 A/cm2 and 5·2 × 104 A/cm2 for films with concentrations of 0, 25, 50 and 100% Fe2O3, respectively. It was found that the films coated with Fe2O3 nanoparticles have significantly enhanced the critical current density. It can be noted that especially the films coated by Fe2O3 became stronger in the magnetic field and at higher temperatures. It was believed that coated films indicated the presence of artificial pinning centres created by Fe2O3 nanoparticles. The results of AFM indicate that surface roughness of the films significantly decreased with increase in concentration of coating material.  相似文献   

13.
Nano-boron (800 nm) and μm-boron (25 μm) precursor were used to synthetize glycine-doped, Cu-and-glycine-co-doped, and undoped MgB2 samples at 800 °C. The C substitution level caused by glycine doping, the MgO content, and the full width at half maximum of the (101) peak for MgB2 phase were compared to evaluate the critical current density (J c) of the six samples. The undoped sample from the nm-boron powder showed enhanced J c over the entire field in contrast with those from 25-um boron, since the excess MgO in nm-boron prepared sample serves as effective pinning centers. On the contrary, due to the reduced MgO pinning centers as well as the increase of the grain size, the glycine-doped nm-boron sample only enhanced the J c performance in the high-field region (H>4.5 T), while the low-field J c values showed a considerable decrease. For the Cu-and-glycine-co-doped sample, the J c performance is nearly without regard to the size of the boron precursor as the high-field J c of the nm-B sample decreased a little, while the low-field J c remained at the same level as that of the μm-B sample.  相似文献   

14.
In this study, we report the physical and magnetic properties of Bi2Sr2CaCu2O x textured materials prepared by a LFZ melting technique and annealed for different times (60, 72, 96 and 120 h). SEM images of the annealed samples for 96 and 120 hours indicate very good alignment with the longitudinal rod axis. In all cases, X-ray diffraction patterns show that the Bi-2212 phase is the major one. The magnetization measurements have been carried out as a function of the magnetic field up to 9 kOe. J c values of the samples were calculated by using the Bean model. The results indicate that the different annealing time has no significant effects on the T c values but, significant change on the critical current values of samples, J c, has been obtained for sample annealed at 96 hours. We also found that the maximum critical density of J c is 5.5×105 A/cm2 at 10 K for the 96 hours annealed sample.  相似文献   

15.
In this paper, we have reported melanin (C16H2O3N2) as a dopant of MgB2 for the first time. Here, the effects of melanin doping to the microstructures and superconducting properties of bulk MgB2 are thoroughly studied from XRD, SEM, TEM, magnetization, and resistivity data. We have analyzed the critical current density (J c), irreversibility field (H irr), flux pinning, resistivity, lattice parameters, grain sizes, critical temperatures (T c), and other microstructures of all the samples. We have varied the doping percentage according to the nominal atomic ratio of Mg1.05(B1?x C x )2, x=0,0.02,0.06,0.08,0.1. The J c of all the melanin-doped samples are improved as compared to that of the undoped sample in high-field region (above 6 Tesla) at low temperature. The 8 and 10 % doped samples give the best results. The 8 % doped sample registers an enhancement of J c by a factor of 3.6 at 7 T and 5 K as compared to that of the undoped one. But, in the low-field region, melanin doping reduces J c. The H irr shows remarkable enhancement at low temperatures below 20 K. The best value of H irr was found for the 8 % doped sample. However, H irr reduces at high temperatures above 20 K in all the melanin-doped samples. The volume pinning strength of all the doped samples is enhanced over the entire field range. Further improvement in superconducting properties can be achieved by further reducing the size of the melanin particles, increasing density, and improving the homogeneity of doping.  相似文献   

16.
Superconducting bulks of MgB2 with addition of Sb2O3 and Sb with different stoichiometric compositions ((MgB2) + (Sb2O3) x , x = 0.0025, 0.005, 0.015, and (MgB2) + (Sb)y, y = 0.01) were obtained by the Spark Plasma Sintering (SPS) technique. All added samples have high density, above 95% and critical temperature, T c, of 38.1–38.6 K. This result and XRD data suggest that Sb does not enter the lattice of MgB2. Impurity phases are Mg3Sb2, MgO, and MgB4. The optimum addition is Sb2O3 for x = 0.005. This sample shows the critical current density, J c(5 K, 0 T) = 4 × 105 A/cm2 and J c(5 K, 7 T) = 6 × 102 A/cm2, while the irreversibility field, H irr (5 K, 100 A/cm2) = 8.23 T. Indicated values of J c and H irr are higher than for the pristine sample. The mechanism of J c and H irr increase in the Sb2O3 added samples is complex and composed of opposite effects most probably involving morphology elements, the presence of nano metric MgB4 and the indirect influence of oxygen or oxygen and Sb. Crystallite size of MgB2 is decreasing when Sb-based additions are introduced and the effect is stronger for the Sb-metal addition. The sample with Sb-metal addition does not improve J c and H irr when compared with pristine sample.  相似文献   

17.
Si doped ZnO (SZO) films with various Si concentrations were deposited by atomic layer deposition at 300 °C using triethyzinc, tris(dimethylamino)silane and H2O2 as the precursors. The influences of Si doping concentration on structural, electrical and optical properties of ZnO films have been investigated. All the films exhibited a highly preferential c-axis orientation. A minimum resistivity of 9.2 × 10?4 Ω cm, with a carrier concentration of 4.3 × 1020 cm?3 and a Hall mobility of 15.8 cm2/Vs, was obtained for SZO film prepared with the Si concentration of 2.1 at%. The increase of conductivity with Si doping was attributed to the presence of Si in +3 valence state acting as donor in ZnO and the increases of oxygen vacancies with Si concentration as proven by XPS measurements. The optical bandgap of SZO films initially increased from 3.25 to 3.55 eV with increasing of Si concentration to 2.1 at%, then decreased with further increase of Si concentration. The blue shift of band gap of SZO films with increasing carrier concentration can be explained by the Burstein-Moss (B-M) effects.  相似文献   

18.
The effect of Cd doping on structure and superconductivity in Mg0.5Cd0.5B2 fabricated by a solid-state reaction at ambient pressure has been investigated. The resulting changes in crystal structure, superconducting transition temperature T c and critical current density J c are characterized by X-ray diffraction, dc magnetization, electrical resistance, and magnetic measurements. It reveals that Cd does not occupy the atomic Mg sites in the MgB2 crystal structure, but merely reacts with Mg and forms a MgCd3 phase. It is striking to note that although the nonsuperconducting phase MgCd3 is as high as about 67 vol.% in Mg0.5Cd0.5B2, the T c of the doped sample drops only by about 1 K. Most important, a surprising improvement of J c of 5.0 × 105 A/cm2 (5 K, 0 T) has been achieved in Mg0.5Cd0.5B2. It is suggested that the improvement in J c in Mg0.5Cd0.5B2 is primarily due to pinning effects induced by MgCd3. Also, it is thought that MgCd3 may fill up gaps among grains in MgB2 and produce better grain linkage, which may be another source of improvement in J c in Mg0.5Cd0.5B2.  相似文献   

19.
Superconducting MgB2 thin films have been prepared using Ultrasonic Spray Pyrolysis (USP) system. 2.4 MHz USP system and various solutions which contain different Mg, B and de-ionized water and LAPSA concentrations and gas atmospheres were used to obtain 500 nm to 1.0 ??m thick MgB2 films. Some of the films produced were heat treated in-situ in the spraying chamber during deposition and some of them were annealed ex-situ in the tube furnace under Mg vapor. T c and T zero of the samples were obtained to be 39.5 K and 37.4, 39.5 and 37.0 for ex-situ and in-situ prepared films, respectively. The highest critical current density was obtained to be 4.12×106 A?cm?2 for ex-situ annealed films and 4.01×106 A?cm?2 for in-situ produced films. The result obtained indicated that the ex-situ preparation method provides improvement in the transport and magnetic properties.  相似文献   

20.
We have fabricated Fe-sheathed MgB2 tapes through an ex situ process in a powder-in-tube (PIT) technique using powders ball milled under various conditions. Although the ex situ processed wires and tapes using the high-energy ball milled MgB2 powders have been studied and the decrease of grain and crystallite sizes of MgB2 and the critical current density (Jc) improvement of those conductors were reported so far, the use of filling powders milled at a higher rotation speed than previously reported further decreases the crystallite size and improves the Jc properties. The improved Jc values at 4.2 K and 10 T were nearly twice as large as those previously reported. Those milled powders and hence as-rolled tapes easily receive contamination in air. Thus, the transport Jc properties are easily deteriorated and scattered unless the samples are handled with care. The optimized heat treatment temperature (Topt) of those tape samples at which best performance in the Jc property is obtained decreases by more than 100 °C, compared with that of tapes using the as-received MgB2 powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号