共查询到19条相似文献,搜索用时 78 毫秒
2.
为适应不同终端显示多样化的要求,需对接收到的图像进行缩放调整。针对现有的基于内容感知(content-aware)的图像缩放方法中视觉内容的连贯性易被破环而出现失真的问题,提出了一个基于离散余弦变换(discrete cosine transform, DCT)域的视觉显著性检测的图像缩放算法。该算法利用DCT域的视觉显著性检测模型获取视觉显著图,然后结合视觉显著图和能量分布图进行线裁剪(Seam Carving),实现了图像的缩放。实验结果表明,该算法与现有的基于内容感知的图像缩放方法相比,不仅保护了视觉显著内容,还保证了图像内容的连贯性,算法质量指数也获得明显的提高。 相似文献
3.
图像显著性特征已被广泛地应用于图像分割、图像检索和图像压缩等领域,针对传统算法耗时较长,易受噪声影响等问题,提出了一种基于HSV色彩空间改进的多尺度显著性检测方法。该方法选择HSV色彩空间的色调、饱和度和亮度作为视觉特征,先通过高斯金字塔分解获得三种尺度的图像序列,然后使用改进的SR算法从三种尺度的图像序列中提出每个特征图,最后将这些特征图进行点对点的平方融合和线性融合。与其它算法的对比实验表明,该方法具有较好的检测效果和鲁棒性,能够较快速地检测出图像的显著性区域,能够突显整个显著性目标。 相似文献
4.
张巧荣 《中国图象图形学报》2016,21(2):165-173
目的 针对图像的显著区域检测问题,提出一种利用背景先验知识和多尺度分析的显著性检测算法。方法 首先,将原始图像在不同尺度下分解为超像素。然后,在每种尺度下根据各超像素之间的特征差异估计背景,提取背景区域,获取背景先验知识。根据背景先验计算各超像素的显著性,得到显著图。最后,将不同超像素尺度下的显著图进行融合得到最终显著图。结果 在公开的MASR-1000、ECSSD、SED和SOD数据集上进行实验验证,并和目前流行的算法进行实验对比。本文算法的准确率、召回率、F-Measure以及平均绝对误差均在4个数据集上的平均值分别为0.718 9、0.699 9、0.708 6和0.042 3,均优于当前流行的算法。结论 提出了一种新的显著性检测算法,对原始图像进行多尺度分析,利用背景先验计算视觉显著性。实验结果表明,本文算法能够完整、准确地检测显著性区域,适用于自然图像的显著性目标检测或目标分割应用。 相似文献
5.
《计算机应用与软件》2017,(8)
显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-OMON上进行了实验,从PR曲线、F-Measure方法、MAE绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 相似文献
6.
人类视觉系统能够通过对场景中感兴趣的不同事物进行显著性检测,有效地配置处理资源。基于视觉注意机制的显著性检测方法能够简化遥感影像场景分析、目标解译的复杂程度,节省处理资源。以视觉注意机制为基础,提出了一种尺度自适应的SAR图像显著性检测方法,通过不同尺度下的局部复杂度和自差异性来度量图像的显著性测度,设计显著性尺度确定算法以及融合显著性尺度和显著性测度以生成显著图,完成显著性检测的流程。实验结果表明该方法能够有效应用于SAR图像显著性检测,较之其他主流显著区域检测算法更适用于SAR图像场景分析。 相似文献
7.
基于HVS的多尺度显著性检测算法 总被引:1,自引:0,他引:1
为提高图像显著性检测的准确性,借鉴有关人类视觉系统的研究成果,提出了一种基于人类视觉系统(HVS)的多尺度显著性检测方法.该方法先将图像分割成小的图像片以获取图像的局部信息,然后采用PCA进行特征抽取,在得到的低维空间中计算图像片的差异.通过结合人类视觉系统和多尺度方法降低背景的显著度,提高显著性目标的显著值.实验结果表明,该方法在检测效果和抗噪能力等方面均可获得较为满意的结果. 相似文献
8.
9.
显著性目标检测是遥感图像处理的重要研究领域,传统的方法通过逐个像素点的计算来实现目标检测,难以满足遥感图像大面积实时处理的要求。将视觉注意机制应用到遥感图像的显著性目标检测中,在训练阶段,将所有的目标融合成目标类,所有的背景融合成背景类,目标类的显著性均值与背景类的显著性均值的比值得到一个权重向量;在检测阶段,所有的特征图乘以权重向量得到自顶向下的显著性图;自顶向下和自底向上的显著性图融合生成全局显著性图。实验结果表明当目标和背景不是总成对出现时,该方法的检测结果优于Navalpakkam模型和Frintrop模型的检测结果。 相似文献
10.
对于复杂的场景,人类视觉系统选择性注意机制能够不需要训练而快速地定位到图像中的显著目标上.文中结合火焰的先验信息,基于显著性的四元数离散余弦变换算法来检测视频中的火焰.首先根据火焰在RGB空间中3个颜色分量之间的特殊关系改进了2个火焰颜色特征公式,得到2幅火焰颜色的特征图;然后通过计算疑似火焰区域的LBP特征向量的距离得到火焰的纹理特征图;再根据火焰内部的动态纹理、火焰闪烁频率特征计算改进后的火焰高频过零次数,得到火焰的动态特征图;最后将这4幅火焰特征图构成一个四元数,利用四元数离散余弦变换得到最终的火焰显著图.在Bilkent大学的火焰视频库中进行实验的结果表明,该方法具有准确率高、鲁棒性强的特点,优于对比的其他视频火焰检测算法. 相似文献
11.
为在没有先验知识的情况下准确获取图像显著性目标,提出一种基于对数Gabor滤波器和超复数傅里叶变换的视觉显著性检测算法。利用对数Gabor滤波器模仿人类视觉感受野,对输入图像进行预处理,提取颜色、纹理方向等特征。根据所得特征构造各尺度下的超复数图像,并求其傅里叶变换相位谱,将多尺度超复数相位谱反变换后进行归一化,从而获得视觉显著图。实验结果表明,该算法与传统的算法相比具有更高的准确率,应用于复杂场景下的交通标志检测能取得较好的检测效果。 相似文献
12.
多聚焦图像存在聚焦区和离焦区,聚焦区通常吸引人的注意力,具有突出的视觉显著性。传统融合算法缺乏对聚焦区域的定位能力,对多聚焦图像融合的适应性普遍较差。为此,提出一种模拟人类视觉注意机制的多聚焦图像融合方法。利用谱残差算法计算源图像的显著度图,通过判断不同源图像相同位置上的像素显著性,选择显著度大的图像像素组成该源图像的聚焦区,显著度相等的像素构成边界带,使用腐蚀膨胀操作消除聚焦区内的孤立像素点,以每幅源图像的聚焦区域和梯度值较大的边界带像素作为融合图像的像素。实验结果表明,该方法能自主选择清晰像素,获得37d B以上的高峰值信噪比,且基本无参数设置,在不同类型图像融合中均表现出较强的鲁棒性。 相似文献
13.
视觉选择性注意模型的应用是当今认知信息处理领域的研究热点。根据人类视觉感知理论,在介绍具有代表性的视觉注意模型(Itti模型)的基础上,在特征提取的初级阶段引入新的低层视觉特征,形成一种新的引导注意的显著图,从而实现较为准确的目标检测。结果证明该方法在一定程度上避免了漏检测现象的发生,使得注意区域更能接近生物视觉系统的实际。 相似文献
14.
提出了一种利用人类视觉机制进行图像融合的算法。首先对源图像进行金字塔分解;接着对低频和高频分量采用不同的融合策略,低频分量依据最大显著性准则选择融合像素,高频分量利用相关性加权准则选择融合像素。初步融合后的低频和高频分量经金字塔重建获得最终融合结果。金字塔变换可提供多分辨率的图像表示,但不区分图像区域的重要性;而视觉显著性检测可定位图像最显著区域,但对噪声敏感;两算法的结合能取长补短,获得好的融合结果。实验表明,提出的方法优于已发表的其他基于金字塔变换的图像融合算法,适用于多聚焦图像、多波段图像和多光谱图像融合。 相似文献
15.
16.
针对传统显著性模型在自然图像的显著性物体检测中存在的缺陷,提出了一种利用背景原型(background prototypes)进行对比的视觉关注模型,以实现显著性物体的检测与提取;传统显著性模型主要通过计算区域中心与四周区域差异性实现显著性检测,而自然场景中显著性区域和背景区域往往都存在较大差异,导致在复杂图像中难以获得理想检测效果;基于背景原型对比度的显著性物体检测方法在图像分割生成的超像素图基础上,选择距离图像中心较远的图像区域作为背景原型区域,通过计算图像中任意区域与这些背景原型区域的颜色对比度准确检测和提取图像中的显著性物体;实验结果表明,基于背景原型对比度的显著性模型可以更好地滤除杂乱背景,产生更稳定、准确的显著图,在准确率、召回率和F-measure等关键性能和直观视觉效果上均优于目前最先进的显著性模型,计算复杂度低,利于应用推广。 相似文献
17.
为了快速有效地检测图像中的显著性区域,利用颜色通道差异信息和空间信息,提出了一种基于颜色通道比较的显著性检测算法. 该算法将显著性检测任务看作对图像前景区域和背景区域进行分离和识别的过程,首先基于RGB颜色空间构造了一组反映不同色彩信息的颜色通道,通过通道比较将不同颜色的区域分离开,然后通过分析空间信息选择出属于前景的区域,最后对所有前景区域进行合并得到最终的显著图. 我们在两个公开数据集上与现有的一些检测算法进行了对比试验,结果表明该算法具有较低的计算复杂度以及较高的检测准确率和召回率,证明该算法是简单有效的. 相似文献
18.
Hierarchical Visual Attention Model for Saliency Detection Inspired by Avian Visual Pathways 下载免费PDF全文
Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian visual systems. However, electrophysiological and behavioral evidences indicate that avian species are animals with high visual capability that can process complex information accurately in real time. Therefore, the visual system of the avian species, especially the nuclei related to the visual attention mechanism, are investigated in this paper. Afterwards, a hierarchical visual attention model is proposed for saliency detection. The optic tectum neuron responses are computed and the self-information is used to compute primary saliency maps in the first hierarchy. The "winner-take-all" network in the tecto-isthmal projection is simulated and final saliency maps are estimated with the regularized random walks ranking in the second hierarchy. Comparison results verify that the proposed model, which can define the focus of attention accurately, outperforms several state-of-the-art models. This study provides insights into the relationship between the visual attention mechanism and the avian visual pathways. The computational visual attention model may reveal the underlying neural mechanism of the nuclei for biological visual attention. 相似文献
19.
颜色对比度是图像关注区域检测的重要线索,准确地提取反映图像不同颜色特征的区域,非常有助于计算各个区域的对比度.为了得到有效的对比图,首先利用封闭先验通过检测位平面中的连通性来提取具有不同颜色特征的封闭区域.其次,利用背景先验消除与图像边界连通的封闭区域并得到封闭区域掩膜.然后利用对比度先验与封闭先验,提出某区域在各个位平面中表现为封闭的次数越多越有可能是关注区域的假设,并通过封闭区域掩膜的叠加计算各个封闭区域的对比度.同时,结合人眼对小面积的封闭区域与封闭轮廓的感知特性,以及对关注区域视觉资源的分配特性,在获取对比度图的关键环节采取形态学滤波和高斯模糊,最终实现面向凝视点估计的图像显著度检测.与多种经典的检测模型相比,提出的方法取得了较好的性能. 相似文献