首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
使用Gleeble-3800热模拟机对42CrMo钢在变形温度为1 123~1 223 K,变形速率为0.1~10 s-1下进行热压缩实验,研究了其热变形行为,构建了42CrMo钢的本构方程;通过对材料常数(α,n,Q和ln A)的分析,得到了流动应力的预测模型;绘制了42CrMo钢的热加工图,得到最优热加工工艺区间。结果表明:材料对温度、应变速率敏感,其流变应力随着变形温度增加和应变速率降低而减小。流动应力预测模型预测精度为0.987,42CrMo钢最优工艺范围为:变形温度1 140~1 223 K,应变速率0.1~1.5 s-1。本研究可对42CrMo钢热变形加工工艺制定提供指导。  相似文献   

2.
使用Gleeble-1500D热模拟试验机对9Ni钢进行了热压缩变形实验,研究其在应变量为0.8、 变形温度为800~1150℃、 应变速率为0.1~5 s-1下的热变形行为,并对不同热变形条件下实验样品的微观组织进行了系统研究.研究发现,针对不同的变形条件,真应力-真应变曲线中的流变应力随着变形温度的升高以及应变速率...  相似文献   

3.
以支承辊常用材料铸态Cr5钢为研究对象,在单道次热压缩试验的基础上,对其在不同试验参数下的热变形行为及热加工图进行分析研究。试验中,变形温度为850~1220℃,变形速率为0.01~1 s-1,真应变为0.7。利用试验数据绘制了铸态Cr5钢的真应力-真应变曲线,得出影响流变应力的因素。并通过拟合曲线计算了各待定材料系数,给出了铸态Cr5钢的流动应力方程。最后,基于真应力-真应变曲线,绘制了0.1~0.6应变范围内的热加工图。结果表明:提高变形温度以及减小应变速率可以降低Cr5钢的流变应力,有助于动态再结晶的发生;而随着应变的增加,失稳区域与功率耗散因子变大。Cr5钢高温下最适宜的加工参数区间为:变形温度为1000~1200℃,应变速率为0.03~0.37 s-1。  相似文献   

4.
研究了变形温度为1000~1150℃、应变速率为0.001~1 s-1时16Mn2VB钢的热变形行为。利用流变应力数据,建立了16Mn2VB钢的热压缩变形本构关系,计算了变形激活能。根据材料动态模型,计算并分析了16Mn2VB钢的热加工图。结果表明,在1000~1040℃、0.03~0.16 s-1和1070~1125℃、0.5~1 s-1条件下功率耗散效率值较高,可以为确定热变形的最佳工艺参数提供指导。  相似文献   

5.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

6.
利用Thermecmastor-Z热模拟试验机对COST FB2钢进行了等温压缩试验,研究了其在不同热变形工艺参数下的热变形行为、显微组织演变规律以及最优的热加工工艺窗口。结果表明,热变形过程中,流变应力随着变形温度的升高及应变速率的降低而降低,在不同的应变速率与变形温度下,流变应力曲线呈现出动态再结晶、动态回复与加工硬化特征。基于Arrhenius方程和Zener-Hollomon函数,求得COST FB2钢的热变形激活能Q为449.56 kJ·mol-1。建立了本构模型,该模型预测值与试验值吻合度较高。基于Prasad失稳判据建立了COST FB2钢热加工图,结合热变形后的显微组织特征,发现失稳区主要集中分布于变形温度900~950℃、应变速率0.04~0.5 s-1范围内,其显微组织为沿变形方向拉长的带状组织,并存在局部流动性,对应的功率耗散值η较低;安全区显微组织主要特征是部分动态再结晶组织,功率耗散值η较高。确定了其0.8应变量下合理的热加工工艺窗口为:变形温度975~1050℃、应变速率0.01~0.14 s-1  相似文献   

7.
为研究40Cr钢的热变形行为和热加工性能,在Gleeble1500型热模拟试验机上对40Cr钢进行了不同参数下的等温热压缩试验,建立了包含再结晶特征的40Cr钢高温流变应力模型,并绘制了其热加工图。结果表明,所建立的流动应力模型能够很好地预测40Cr钢不同热变形条件下的应力-应变曲线。观察了不同变形条件下热压缩试样的微观组织,发现失稳区域为不完全动态再结晶的“项链”组织,非失稳区域中耗散值较小区域和较大区域分别为平均晶粒尺寸为128.2和20.4μm的动态再结晶组织,验证了热加工图的可靠性。结合微观组织观察和热加工图分析,可以确定40Cr钢的最佳热加工区域为温度1050~1150℃、应变速率1~10 s-1。  相似文献   

8.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。  相似文献   

9.
利用Gleeble3180热模拟试验机,在变形温度为950~1100 ℃,应变速率为0.001~1 s-1,真应变为0.7的条件下,对X12CrMoWVNbN钢进行了高温单向热压缩试验。通过不同条件下的高温流变曲线分析了变形温度和应变速率对试验钢热变形力学行为的影响。以Arrhenius方程为本构模型,建立了能够预测该钢流动应力的本构方程。基于动态材料模型和试验参数、结果,绘制了该钢不同应变量下的热加工图并结合图进行了组织分析。结果表明,流变峰值应力和稳态应力随温度降低或应变速率升高而升高;功率耗散系数随应变速率降低和变形温度的升高而增大;最优热加工区域功率耗散系数η的值都在0.4以上,且这些区域的变形组织晶粒均匀细小;0.3、0.4、0.5和0.6应变下的最优热加工区域都处于变形温度1050~1100 ℃、应变速率0.001~0.003 s-1的范围。  相似文献   

10.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

11.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

12.
采用Gleeble-3500热模拟试验机研究了微碳钢在700~1100℃、0.01~10 s-1条件下的热变形行为。确定了其在铁素体区和奥氏体区的热变形方程。建立了微碳钢在不同应变量下的热加工图(Processing Map)。结果表明,在铁素体区和奥氏体区,试验钢的峰值应力大小基本相当;试验钢在铁素体区和奥氏体区的热变形激活能分别为302 kJ/mol和353 kJ/mol;不同真应变下的热加工图相似,当变形温度为875℃,应变速率为0.01 s-1时,能量消耗效率达到最大值为0.5。  相似文献   

13.
  在Gleeble-3800热模拟试验机上,研究了S31042合金的热塑性及热变形行为,并建立了合金的热加工图。结果表明,在900~1250℃热变形范围内,合金均具有较好的热塑性;计算得出合金的热变形激活能为467.412 kJ/mol;通过热加工图分析得出,合金适宜初始加工温度范围在1200~1250 ℃,采用此参数锻造获得的锻坯组织细小均匀。  相似文献   

14.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

15.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.  相似文献   

16.
The deformation behavior of squeeze cast ZK60 magnesium alloy was investigated by compressive tests conducted at temperatures of 250-450 ℃ and strain rates of 0.001-10 s^-1 with Gleeble--1500D thermal simulator system. The hot deformation behavior of squeeze cast ZK60 magnesium alloy was characterized using processing map developed on the basis of the dynamic materials model. The processing map gives safe "processing windows" in which the processes of dynamic recovery and dynamic recrystallization occur. It reveals that the dynamic recrystallization domain occurs at 375 ℃ and strain rate of 0.001 s^-1, and its power dissipation efficiency approximately corresponds to 36%, which should be considered the optimum parameters for hot working of squeeze cast ZK60 magnesium alloy. The variation of the instability parameter ξ(ε) with temperature and strain rate constitutes an instability map, which is used for delineating the region of flow instability. The material exhibits flow instability which should be avoided in mechanical processing.  相似文献   

17.
18.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Y合金进行高温等温压缩试验,变形温度和应变速率分别为650~850℃和0.001~10 s-1,对合金高温热压缩过程中的变形行为进行研究。结果表明:其流变应力随应变速率的提高而增大,随变形温度的升高而减小。并根据动态材料模型绘制和分析了该合金的热加工图,得出了热变形过程的最佳工艺参数为:温度为800~850℃,应变速率范围为0.001~0.1 s-1。  相似文献   

19.
为研究锻态C-276镍基合金的热变形行为,采用Gleeble-3180D热模拟试验机对该合金在变形温度950~1200℃以及应变速率0.01~10 s-1条件下进行一系列热压缩实验。结果表明,合金的流变应力曲线都呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低。根据Arrhenius模型构建该合金峰值应力下的本构方程,得出合金的变形激活能为510.484 kJ/mol。依据材料动态模型绘制合金在0.6应变下的热加工图,并结合组织分析提出该合金最优的热加工参数为(1100℃,0.01 s-1)以及(1150℃,0.01~1 s-1)。另外,合金的组织变化规律表明,温度的增加或应变速率的降低能够促进合金的动态再结晶晶粒的形核与长大。  相似文献   

20.
Cr微合金化低碳钢热变形行为   总被引:1,自引:1,他引:0  
采用Gleeble-3500热模拟机对一种含微量合金元素Cr、Mn、Ti的低碳钢在变形温度700~1050℃.应变速率0.01~0.1s~(-1)条件下的热变形行为进行研究.结果表明:单相奥氏体区和铁索体区,峰值应力随变形温度的降低而升高,在两相区,峰值应力随着变形温度的降低而降低;在775~850℃与950~1050℃的温度区间,峰值应力的大小基本相当.建立了热加工图,并通过组织观察对其热加工图进行了解释.根据流变应力曲线,确定了试验低碳钢铁素体区的热变形激活能和热变形方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号