首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
首先,以挤压态HNi55-7-4-2镍黄铜合金为对象,应用热模拟机Gleeble-3500对其进行等温热压缩实验,研究该合金在600~800℃和0.01~10 s-1条件下的热变形行为。其次,基于动态材料模型和极性交互模型,分别建立HNi55-7-4-2镍黄铜合金的Prasad、Murty和PRM加工图,并结合不同变形条件下的微观组织演变,对比3种加工图的预测效果。结果表明:Murty加工图预测效果最差,而Prasad加工图和PRM加工图预测效果较好。HNi55-7-4-2镍黄铜合金的最优热变形加工参数范围为:变形温度为600~725℃,应变速率为0.01~0.07 s-1和变形温度为740~800℃,应变速率为0.05~1 s-1。失稳区的变形机制为局部塑性流动和混晶组织,安全区的变形机制为动态再结晶。  相似文献   

3.
4.
研究了挤压态镍黄铜HNi55-7-4-2合金高温本构模型的修正方法及其变形激活能的演化规律,对HNi55-7-4-2合金进行不同变形温度(873~1073 K)及应变速率(0.01~10 s~(-1))条件下的等温热压缩实验,获取了HNi55-7-4-2合金的流动应力-流动应变曲线。基于材料参数和变形激活能对变形条件的依赖,构建了一种考虑变形条件对材料参数影响的修正本构模型。经验证,修正本构模型能很好地预测HNi55-7-4-2合金的高温流动应力,其预测精度高。在不同变形条件下应用修正本构模型计算变形激活能,变形激活能受到变形温度、应变速率和变形量的综合影响,其变化范围在119.0~173.2 kJ·mol~(-1)之间。此外,变形激活能随着变形温度的增加而降低,随着应变速率的增加先降低后升高。  相似文献   

5.
通过对轧制态Mg-4Zn-2Y合金在不同热变形温度以及应变速率下进行高温拉伸试验,研究了Mg-4Zn-2Y合金在不同工艺参数下进行热变形时流变应力的变化规律,并绘制了热加工图。结果表明,流变应力与变形温度以及应变速率均有关系,热变形温度不变时,材料的最大流变应力会随着应变速率的提高而增大;在应变速率不变时,材料的最大流变应力随着变形温度的升高会逐渐下降。采用双曲正弦修正的本构模型确定了轧制态Mg-4Zn-2Y合金的变形激活能Q=242 233.2 J·mol-1,应力指数n=8.09。通过热加工图确定了Mg-4Zn-2Y合金的可加工区域为472.15~545.00 K,10-3~10-4 s-1和545.00~672.15 K,10-4~10-1 s-1。  相似文献   

6.
为研究Ti6Al4V合金在热成形过程中的力学性能,在923~1023K温度和0.0005~0.05s1应变速率范围内,进行片状试样的恒温高温拉伸试验,采集应力—应变试验数据并建立材料的本构模型。将Arrhenius和Norton-Hoff本构模型用于表征合金的高温拉伸行为。拟合结果显示,考虑材料常数应变补偿的Arrhenius模型和改进的Norton-Hoff模型均可以准确地预测Ti6Al4V合金多数条件下的流变应力,由拟合结果比较可知改进的Norton-Hoff模型比Arrhenius模型更精确。  相似文献   

7.
采用Gleeble热力模拟试验机对Mg-Zn-Zr-Y合金进行了高温压缩变形实验,分析了合金在变形温度为573~723K、应变速率为0.001~1 s-1范围内的流变行为。结果表明,热变形条件对流变特征和流变应力影响显著,流变曲线呈现"饱和非线性"和"正偏态分布"2种特征,应力水平随着变形温度的降低和应变速率的增大而提高。基于Arrhenius和Zener-Holloman方程,线性拟合确定了合金的表观变形激活能(Q=152.307 k J·mol~(-1))和应力指数(n=5.521)等参数,建立了描述塑性流变行为的本构方程。结果显示,该本构模型数值计算出的流变应力理论值与实验结果的吻合程度依赖于热变形条件的取值范围,与"饱和非线性"稳态流变特征的塑性变形行为基本吻合;而与加工硬化突出的"正偏态分布"流变行为存在一定偏差,引起理论峰值应变前移,但峰值应力水平仍基本符合。表明该本构模型在Mg-Zn-Zr-Y合金中表现出较好的实用性,尤其适用描述高变形温度(623 K)和低应变速率(0.01 s~(–1))下稳态塑性变形行为。  相似文献   

8.
通过Gleeble-3800热模拟实验机,在应变速率为0.1~20 s-1、变形温度为900~1200℃的条件下对轻轨用55Q钢进行轴向单道次压缩实验,得到55Q钢的真应力-真应变曲线,并分析研究了不同热加工条件对55Q钢高温流变应力的影响。实验结果表明:在相同变形温度下,低应变速率时的流变应力较低,在相同应变速率下,高温时的流变应力较低,说明低应变速率和高温有利于动态软化。对流变应力、应变速率和变形温度之间的关系进行线性拟合,建立了55Q钢的修正Johnson-Cook本构模型和基于应变补偿的Arrhenius本构模型,对比两种模型发现,基于应变补偿的Arrhenius本构模型的预测精度更高,能够较好地揭示55Q钢的热变形特性。  相似文献   

9.
通过Gleeble-3800热模拟实验机,对EA4T车轴钢分别在变形温度为970、1070和1170℃及应变速率为0.01、0.1和1.0 s的条件下进行热压缩实验,压缩至最大真应变为0.8。以得到的真应力-真应变实验数据为基础,分别建立了考虑应变补偿的Arrhenius本构模型和经过遗传算法优化后的Arrhenius本构模型(GA-Arrhenius),用于预测真应力与真应变的关系。为了验证GA-Arrhenius本构模型在真应力预测中的优越性,使用相关系数R、平均绝对误差AARE和均方根误差RMSE来说明其预测精度。实验结果表明:采用Arrhenius本构模型时,R=0.9970、AARE=3.4232%、RMSE=2.8773 MPa;采用GA-Arrhenius本构模型时,R=0.9982、AARE=2.6577%、RMSE=2.2110 MPa。说明相较Arrhenius本构模型,GA-Arrhenius本构模型能够更好地预测EA4T钢热成形过程中的真应力与真应变的关系,可以实现更高精度的有限元数值模拟。  相似文献   

10.
采用Gleeble-3500热模拟试验机在应变速率为0.001~1s-1、变形温度为700~1000℃的条件下,对18CrNiMo7-6合金钢实施等温压缩试验,获得18CrNiMo7-6合金钢在不同条件下的真实应力-真实应变曲线,分析其热变形行为。构建了18CrNiMo7-6合金钢的Zerilli-Armstrong (Z-A)本构模型,描述其热变形行为。通过对比分析Z-A本构模型的预测值与等温压缩试验的试验值发现,预测值与试验值的线性相关系数为0.9750,平均相对误差为8.1792%。为了进一步提高模型的预测精度,采用应变的5阶多项式描述Z-A本构模型中与应变有关的材料参数,实现对模型的修正,修正后的Z-A本构模型的预测值与试验值的线性相关系数为0.9853,平均相对误差为5.5358%,有效提高了本构模型的预测精度。  相似文献   

11.
为研究选区激光熔化高温合金在高温下的塑性变形行为,对选区激光熔化制备的热等静压态GH3536高温合金进行热模拟压缩试验,获得了不同变形条件(变形温度为900、950、1000和1050℃;应变速率为0.01、0.1、1和10 s^(-1))下的高温真应力-真应变曲线,研究了该材料在高温条件下的载荷响应规律,并建立了基于Arrhenius方程的材料高温本构模型。研究发现,峰值应力随着应变速率的升高而升高,随着变形温度的升高而降低,最大峰值应力为592.8 MPa。基于Arrhenius方程建立了HIP状态下GH3536高温合金的高温本构方程,其预测精度的平均相对误差(AARE)为9.42%。通过组织观察发现,在高温变形过程中合金的组织被拉长,材料中有明显发生动态再结晶的迹象。  相似文献   

12.
采用Gleeble-3500热模拟试验机对GH5188高温合金试样进行热压缩试验,研究其在应变速率为0.001~0.1s-1和变形温度在1000~1150℃时的热变形行为;建立了基于BP神经网络的本构模型,并验证了所建本构模型的可靠性,最后基于误差计算分析了BP神经网络本构模型的精度。结果表明,温度和应变速率对GH5188合金流变应力的影响明显,随着压缩温度升高和应变速率降低,GH5188合金流变应力明显减小。经定量误差计算分析,BP神经网络本构模型应力预测偏差值在10%以内的数据点占97.92%,BP神经网络模型能准确地预测GH5188高温合金的高温流变应力。  相似文献   

13.
利用Gleeble-3500型热模拟试验机对Zr-4合金试样进行等温恒应变速率压缩实验,对其热变形行为进行分析,综合考虑变形温度对Young's模量和自扩散系数的影响,建立了 Zr-4合金基于应变耦合的物理本构模型.研究结果表明:合金的峰值应力对变形温度和应变速率敏感,峰值应力会随应变速率的增加或变形温度的降低而增大;...  相似文献   

14.
采用Gleeble-1500热模拟实验机研究铝钨合金在变形温度为450℃~540℃、应变速率为0.001s-1~1s-1下单道次压缩过程的高温流变行为。基于BP神经网络建立铝钨合金本构关系模型。在该模型中,输入变量为应变、应变速率和变形温度,输出变量为流变应力。与传统方法相比,该本构关系模型的测试数据可以为描述整个变形过程提供一个很好的代表性,也为开发铝钨合金本构关系提供方便和有效的途径。  相似文献   

15.
为了研究Ti-6Al-4V合金在高速切削下的真实流动应力-应变关系,针对当温度达到临界变化温度时,材料的流动应力会突然下降这一现象,建立了一种修正Johnson-Cook(J-C)本构方程。修正的J-C本构关系能够准确地描述加工温度范围内再结晶软化机制对材料流动应力的影响,预测结果与试验数据吻合良好,特别是在高温阶段,流动应力计算值与试验值误差在4%以内,正确地反映了Ti-6Al-4V合金各个温度下的真实流动应力变化。结果表明,修正后的J-C本构方程可以用于研究分析Ti-6Al-4V合金的流动应力特征与规律。  相似文献   

16.
为了研究BFe10-1.6-1白铜合金的高温流变行为,采用Gleeble-3800热模拟试验机在变形温度分别为1023、1073、1123、1173、1123和1273 K,应变速率分别为0.001、0.01、0.1、1.0和10 s-1的条件下对BFe10-1.6-1白铜合金进行了热压缩试验,建立了BFe10-1.6-1铜合金的Johnson-Cook本构模型。利用试验应力-应变数据建立了Johnson-Cook本构方程和修正Johnson-Cook本构方程。将所建立的方程预测的流变应力与试验数据进行了对比。引入相关系数R和平均绝对相对误差eAARE验证了修正Johnson-Cook本构方程的准确性。R和eAARE值分别为0.985和6.57%。结果表明,修正Johnson-Cook本构模型能够精确预测大多数变形条件下的流变应力。BFe10-1.6-1白铜合金的主要高温软化机制为动态回复。  相似文献   

17.
采用等温压缩分析了Fe0.25Cr0.25Ni0.25Mn0.25中熵合金在900~1050 ℃、0.001~1 s-1应变速率范围内的流变行为。结果表明,热变形以动态再结晶为主,与其他低堆垛层错能的合金一样,流变曲线呈单峰形状。建立了本构模型来描述整个变形过程,分析了加工硬化行为和动态软化过程。利用Kocks-Mecking图发现,在加工硬化阶段,合金的硬化速率随应力呈线性降低,因此应力-应变行为可以用传统的位错密度模型来描述。同时,采用经典的JMAK方程描述由动态再结晶引起的软化过程。此外,对本构模型进行了进一步的修改,减少了参数的数量,简化了回归分析。所提出的半物理模型不仅可以准确地预测应变范围外的应力-应变行为,而且可用于其他低层错能合金。  相似文献   

18.
采用Gleeble-3500热模拟实验机在变形温度为600~800℃和应变速率为0.01~10 s-1时对HA161-4-3-1铝黄铜合金进行等温热压缩实验,对实验所获得真实应力-应变曲线进行摩擦修正,并以修正后的应力应变数据构建了考虑应变补偿的Arrhenius本构模型.其次,根据修正的应力应变数据构建了应变为0.3...  相似文献   

19.
使用Gleeble-3500热模拟试验机对TC21钛合金在温度为890~990℃、应变速率为0.01~10 s-1下进行了热模拟压缩实验,研究了该合金的高温流变行为。在变形条件下,该合金的流变应力随应变的增大逐渐增加,在达到峰值后又逐渐减小。基于实验数据,分别采用Arrhenius模型和修正Johnson-Cook模型构建了TC21钛合金本构模型,并对这两个模型的预测精度进行了分析对比。结果表明,修正Johnson-Cook本构模型预测值的平均绝对相对误差eAARE为7.2078%,相关系数r为0.96866;Arrhenius本构模型预测值的eAARE为12.6699%,r为0.95794,修正Johnson-Cook本构模型的精度高于Arrhenius本构模型,且在整个参数范围内具有一定的精度,可以较好地描述TC21钛合金的高温流变行为。  相似文献   

20.
在温度623~773 K和应变速率0.01~1 s-1条件下,采用等温压缩试验研究析出硬化AA7022-T6铝合金的热力学行为。结果表明,动态再结晶是主要的热变形机制,特别是在高温和低应变速率下。采用改进的JohnsonCook (J-C)模型和应变补偿Arrhenius模型预测不同变形条件下的热流变行为。这两种模型的线性相关系数分别为0.9914和0.9972,平均相对误差(ARE)分别为6.074%和4.465%,均方根误差(RMSE)分别为10.611和1.665 MPa。结果表明,应变补偿Arrhenius模型能准确预测AA7022-T6铝合金的热流变应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号