首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究碳纤维对铝基复合材料的改性,分别向6061和6063两种铝合金中添加一定量的短切纤维,采用挤压成型方法制备了碳纤维改性铝基复合材料。研究了碳纤维的尺寸及添加量对复合材料力学性能、耐磨性和尺寸稳定性的影响。结果表明,碳纤维改性后的铝基复合材料力学性能有明显提高,其室温抗拉强度、屈服强度均得到增强,而材料的伸长率略有减小;通过耐磨性测试确定了碳纤维的最佳添加尺寸为3 mm,最佳添加量为0.6%;通过冷热冲击测试证明了碳纤维能够有效改善铝基复合材料的尺寸稳定性。  相似文献   

2.
为提高铝基材料耐磨性,采用化学镀铜、镀镍复合方法制备镍铜原子包裹石墨烯和镀碳纳米管,在Al-5Mg混合粉体中添加不同质量分数(0. 1%、0. 2%)的复合镀石墨烯,并在添加质量分数为0. 5%的复合镀石墨烯基础上,添加不同质量分数(0. 1%、0. 3%和0. 5%)的复合镀碳纳米管后,进行超声-电磁复合分散,通过真空热压烧结的方法,制备石墨烯及碳纳米管增强铝基复合材料。利用扫描电子显微镜对试样进行微观组织观察,利用能谱仪对其进行微区成分分析,采用摩擦磨损试验机测试试样摩擦系数和磨损量。研究结果表明:当添加质量分数为0. 5%的石墨烯和0. 5%的碳纳米管时,所制备的铝基复合材料基体上均匀分布着亮白的铝镍相和石墨烯及碳纳米管,局部有石墨烯及碳纳米管团聚现象,团聚的石墨烯及碳纳米管表面保留着复合镀后的镍和铜元素。铝基复合材料的摩擦系数及磨损量随着石墨烯及碳纳米管添加量的增加而明显降低,当加入质量分数为0. 5%的石墨烯和0. 5%的碳纳米管时,其摩擦系数降低至0. 14~0. 27之间。  相似文献   

3.
石墨烯与Ti60合金粉末经过球磨混合后,采用放电等离子烧结法(SPS)制备出石墨烯/Ti60复合材料,并在900℃对其进行热轧加工。采用扫描电子显微镜(SEM)、能谱仪(EDS)、金相显微镜和万能试验机对烧结态与轧制态Ti60合金、石墨烯/Ti60复合材料的微观组织和力学性能进行分析。结果表明:添加质量分数为0.1%的石墨烯能够减小复合材料原始β相尺寸,增大α相尺寸。经热轧加工后,石墨烯/Ti60复合材料在室温、600℃和700℃的抗拉强度分别为1353.0、746.6和391.7 MPa,相比Ti60合金分别提高了9.24%、9.46%和2.99%。  相似文献   

4.
短碳纤维增强羟基磷灰石生物材料的制备与性能   总被引:1,自引:0,他引:1  
以短碳纤维(Cf)为增强体,采用湿法搅拌均化和自组装合成工艺使短碳纤维均匀分散于反应生成的羟基磷灰石(HA)粉体中,30 MPa下将复合粉体压制成型,并于1250℃氮气保护气氛常压烧结制备了短碳纤维增强羟基磷灰石生物复合材料(Cf/HA).为提高复合材料的界面结合,低温氧化法对碳纤维进行表面处理.采用IR,SEM技术研究短碳纤维处理前后的表面状态;SEM观察复合粉体的分散效果及复合陶瓷的断口形貌;三点弯曲法测其抗弯强度;单边切口梁法测其断裂韧性.实验结果表明碳纤维的表面处理对力学性能有很大影响,可大大提高复合材料界面结合强度,Cf添加量为0.5%(质量分数)时,增强效果最为理想,最大抗弯强度为67.70 MPa,断裂韧性达1.18 MPa.m1/2,比Cf未氧化处理的复合材料分别提高近20%和18%.研究表明湿法搅拌均化和自组装合成工艺是一种行之有效的均化技术,具有最小的纤维损伤度、高的碳纤维体积分数以及操作便利等优点,常压下烧结制备的短Cf/HA复合材料是一种很有发展前途的骨替代植入材料.  相似文献   

5.
以NiO和Fe2O3为原料采用固相烧结法合成NiFe2O4尖晶石,通过向其中添加短纤维制备纤维/NiFe2O4惰性阳极材料。为选择适合于NiFe2O4基惰性阳极材料的纤维增强体,对几种纤维在NiFe2O4基体中的高温稳定性进行考察。结果表明,高温下碳纤维、玻璃纤维、氧化铝纤维和碳化硅纤维与NiFe2O4基体是热力学不相容的;1 200℃时镀镍碳纤维和镍纤维不能在基体中稳定存在;1 400℃时ZrO2(f)与NiFe2O4基体具有良好的物理和化学相容性,添加3%ZrO2(f)(质量分数)阳极试样的力学性能得到明显改善。因此,ZrO2(f)可作为NiFe2O4基惰性阳极的纤维增强体。  相似文献   

6.
目的改善硅溶胶的储存稳定性,提高水性硅橡胶涂料的强度。方法将硅烷偶联剂KH-560缓慢加入硅溶胶中,60℃下缓慢搅拌,使其建立化学键。通过体系p H值及宏观形态变化对其改性机理进行分析,并对改性前后的形貌、尺寸、热稳定性、Zeta电位和冻融稳定性等进行表征。将改性硅溶胶和耐热纤维加入自制的硅橡胶乳液中,制备水性硅橡胶涂料,对固化后涂层的拉伸强度、断裂伸长率、拉剪强度及拉开强度进行测试,考察改性硅溶胶的补强作用。结果 KH-560的甲氧基与硅溶胶粒子表面的silica-O-或silica-OH反应,建立新的Si—O—Si键,增大了硅溶胶粒子的空间排斥力,双电层效应减弱。改性硅溶胶经历5次冻结—融化循环仍能很快恢复胶体状态,且粒子形貌、尺寸及分布没有明显差异。以改性硅溶胶为补强填料,水性硅橡胶涂层的力学强度随硅溶胶添加量的增大而逐渐增强。添加30%硅溶胶时,涂层的拉伸强度为3.03 MPa,断裂伸长率为37.1%,拉剪强度为1.68 MPa,拉开强度为1.85 MPa。结论硅烷偶联剂KH-560可以有效改善硅溶胶的储存稳定性,改性硅溶胶对水性硅橡胶涂料有很好的补强作用。  相似文献   

7.
采用选择性激光熔化法制备石墨烯/Inconel718复合材料,并评价其力学性能和摩擦磨损性能。采用XRD、SEM和拉曼光谱技术对复合材料的显微组织进行表征。结果表明,采用选择性激光熔化法制备石墨烯/Inconel 718复合材料是合理可行的,添加石墨烯纳米片对Inconel 718合金不仅产生了显著的强化效果,而且改善了摩擦学性能。1.0%石墨烯/Inconel718复合材料(质量分数)的屈服强度和抗拉强度比未添加石墨烯纳米片的Inconel 718合金分别提高了42%和53%,而其摩擦因数和磨损率分别降低了22.4%和66.8%。石墨烯纳米片增强Inconel718合金的硬度增加以及在磨损表面形成的石墨烯纳米片保护层是导致摩擦因数和磨损率降低的直接原因。  相似文献   

8.
采用结合粉末工艺的两步法搅拌摩擦加工制备石墨烯增强铝基复合材料,研究了石墨烯添加量对复合材料力学性能和导电性能的影响。结果表明,石墨烯的添加对铝基复合材料性能有明显的影响,随石墨烯添加量增加,复合材料的硬度逐渐提高、塑性持续下降,而抗拉强度和电导率均呈先增后减的趋势。石墨烯体积分数为3.7%时,复合材料的抗拉强度最高,达到146.5 MPa,与同等加工条件下的纯铝相比,提高了78.7%,而石墨烯体积分数为1.3%时,复合材料的电导率最高,达到30.62 MS/m,较同等加工条件下的纯铝基体提高了53.4%。  相似文献   

9.
以高温固相合成法,采用两步烧结法制备镀铜碳纤维增强的纤维/NiFe2O4复合陶瓷惰性阳极,即先以NiO、Fe2O3、微量V2O5和MnO2为原料制备NiFe2O4尖晶石基体材料,然后以该NiFe2O4尖晶石基体材料和镀铜碳纤维为原料,采用冷压烧结法制备纤维/NiFe2O4复合陶瓷惰性阳极.研究镀铜碳纤维添加量对NiFe2O4复合陶瓷惰性阳极体积密度、气孔率和抗弯强度的影响.结果表明:添加镀铜碳纤维可以显著改善NiFe2O4复合陶瓷材料的性能,当镀铜碳纤维添加量为3%(质量分数)时,其体积密度比不添加镀铜碳纤维试样的体积密度提高约12%,其抗弯强度比不添加镀铜碳纤维的提高约22%.  相似文献   

10.
目的为了增强氟碳涂层的耐蚀性,研究涂层在3.5%NaCl溶液中的失效过程。方法采用硅烷偶联剂对石墨烯进行接枝改性,将改性后的石墨烯添加到氟碳树脂中,制成不同含量的石墨烯氟碳复合涂层。采用傅里叶变换红外光谱、拉曼光谱、透射电镜和扫描电镜,分析了石墨烯改性前后的结构及在涂层中的分散性。采用交流阻抗谱和动电位极化曲线,研究了涂层在模拟海水中的电化学腐蚀行为和失效过程,并考察了涂层的耐盐雾性能。结果石墨烯表面成功接枝官能团,在涂层中分散较均匀。石墨烯对腐蚀介质具有良好的屏障作用。涂层的防护性能随着石墨烯含量的增大先增加后降低,当含量为0.4%(质量分数)时,涂层的腐蚀电流密度为2.209×10~(–10) A/cm~2,氟碳涂层的腐蚀电流密度为6.026×10~(–6) A/cm~2,腐蚀电流密度大大降低,该涂层的耐蚀性能最好,且浸泡360 h内均为浸泡前期,能有效隔绝腐蚀液体的渗透,对Q235钢基底的防护性能最佳。石墨烯含量过高时易团聚,容易引起缺陷,降低涂层的防护作用。结论石墨烯显著提高了氟碳涂层的耐蚀性能。  相似文献   

11.
采用粉末冶金方法成功制备了石墨烯增强块状银基复合材料。在V型混粉机中混粉制得含银-0.2%石墨烯纳米片(质量分数)复合粉末并使用冷等静压在200 MPa条件下将复合粉末压制成形。使用热等静压在750℃/100 MPa条件下烧结获得石墨烯纳米片增强银基复合材料,然后在850℃条件下进行热挤压获得丝材,挤压比为40。用SEM、TEM和静态拉伸试验等研究了复合材料的微观结构和力学性能,结果表明,复合材料中石墨烯分布均匀,银基体与石墨烯之间界面结合良好。与未增强的银基体相比,银-0.2%石墨烯纳米片复合材料具有显著提高的强度而不损失塑性,表明石墨烯纳米片是银基复合材料理想的增强相。复合材料断口形貌显示出大量韧窝和撕裂棱,其断裂特征为典型的韧窝聚合型延性断裂。  相似文献   

12.
在齿轮用WC-Co复合材料中添加了不同含量石墨烯,并进行了该复合材料的显微组织、耐磨损性和抗热疲劳性的测试。结果表明:添加10vol%石墨烯,可获得石墨烯分布较为均匀,且耐磨损性能和抗热疲劳性能均得到显著提高的齿轮用复合材料;与未添加石墨烯相比,添加10vol%石墨烯可使200℃磨损体积减小80%,热疲劳寿命增加209%。  相似文献   

13.
研究了不同长度(2、3、4、5mm)3%的镀铜短碳纤维增强含Sc的2024铝基复合材料的高温蠕变性能和微观结构。结果表明,在200℃、300MPa的蠕变条件下,添加了2mm碳纤维的复合材料的蠕变性能最优,其蠕变断裂时间为21.16h,稳态蠕变速率为1.05×10~(-5)s~(-1)。在不同温度(150~190℃)和不同应力(200~400MPa)蠕变条件下,复合材料的门槛应力随温度的升高而线性下降,其中添加2mm碳纤维增强复合材料的蠕变激活能最高,为83.9kJ/mol。碳纤维增强铝基复合材料的主要蠕变机制为位错攀移。  相似文献   

14.
利用粉末冶金热挤压技术制备短碳纤维增强镁合金复合材料。为了改善碳纤维与基体的润湿性,对碳纤维进行表面无钯化学镀镍处理。通过扫描电子显微镜(SEM)观察碳纤维化镀层以及碳纤维镁基复合体的形貌,通过超景深金相显微镜观察纤维在复合材料中的分布并对复合材料的挤压过程进行分析。结果表明:镀镍碳纤维能满足制备的要求并有利于纤维在复合体中的均匀分散,在含4.0%(质量分数)碳纤维的预制体采用压制压力为420MPa,烧结温度为550℃保温0.5h后,在480℃用280MPa的压力进行热挤压得到材料的力学性能最佳。  相似文献   

15.
在齿轮用WC-Co复合材料中添加了不同石墨烯,并进行了该复合材料的显微组织、耐磨损性能和抗热疲劳性能的测试。结果表明:添加10vol%石墨烯,可获得石墨烯分布较为均匀、耐磨损性能和抗热疲劳性能均得到显著提高的齿轮用复合材料;与未添加石墨烯相比,添加10vol%石墨烯可使200℃磨损体积减小80%、热疲劳寿命增加209%。  相似文献   

16.
采用真空热压烧结工艺制备了纤维长度为3mm、质量分数为3%的短碳纤维增强2024铝基复合材料。研究了热压工艺对复合材料密度、晶粒尺寸、界面结构和硬度的影响。结果表明,在450℃、50MPa下保温50min时,复合材料致密程度较高,纤维与α(Al)基体的界面结合良好,硬度达到最高。由于镀铜层提高了纤维与α(Al)基体的润湿性,镀铜短碳纤维比没有镀铜的短碳纤维对复合材料的性能提高更显著。  相似文献   

17.
采用不同的改性剂对碳纤维进行了改性处理,制备了含碳纤维增强材料的SLS覆膜砂试样。通过对试样进行力学性能测试与SEM形貌分析,研究了碳纤维改性及其含量对SLS覆膜砂铸型抗拉和抗弯强度的影响。结果表明,经过浓硝酸与硅烷偶联剂KH550共同改性处理的碳纤维对SLS覆膜砂铸型的强化效果最佳,并随着改性碳纤维含量的增加,铸型强度先增大后减小。当改性碳纤维含量为3%时,SLS覆膜砂铸型后固化抗拉强度与抗弯强度均达到最大值,分别为6.385 MPa、8.011 MPa,比添加未改性碳纤维的铸型分别提升了46.18%、33.92%,较未添加碳纤维的铸型也分别提高了23.18%、31.46%。  相似文献   

18.
《铸造技术》2016,(9):1824-1826
通过在YG6硬质合金粉末中添加不同含量的石墨烯和TiC,采用"球磨-烧结"的方法制备了钛合金切削刀具用复合材料,分析了其显微组织、力学性能和铣削性能。结果表明,添加石墨烯或TiC能改善其力学和铣削性能,当添加质量分数为0.35%的石墨烯和0.15%的TiC时,改善效果更佳;与未添加合金相比,复合添加质量分数0.35%的石墨烯和0.15%的TiC,使合金抗弯强度增加53.0%、磨损体积减小82.3%。  相似文献   

19.
石墨烯对铜基制动材料的性能影响   总被引:1,自引:1,他引:0  
目的为了提高铜基制动材料的力学性能和摩擦学性能,选用石墨烯作为增强填料添加到铜基制动材料中,研究石墨烯对铜基制动材料性能的影响。方法采用粉末冶金的方法制备了石墨烯含量(质量分数,后同)分别为0%、0.2%、0.4%、0.6%、0.8%的铜基复合材料,并对不同试样的力学性能和摩擦磨损性能进行比较。结果含有石墨烯的试样硬度为46.4~54.2HB,高于未添加石墨烯试样的硬度(44.5HB)。含有石墨烯的试样抗弯强度为250~418 MPa,均高于未添加石墨烯试样的抗弯强度(218 MPa),其中石墨烯含量为0.4%的试样的硬度和抗弯强度最大,分别为54.2HB和418 MPa。随着石墨烯含量的增加,材料的密度逐渐下降。当石墨烯含量为0.2%~0.4%时,材料摩擦系数的稳定性提高且磨损率降低;当石墨烯含量为0.6%~0.8%时,材料摩擦系数的稳定性下降且磨损率变大。当石墨烯含量为0.4%时,材料的摩擦系数最稳定,摩擦系数的方差为0.3×10~(-3)(未添加石墨烯的试样为1.4×10~(-3)),磨损率最低,位于0.136×10~(-6)~0.185×10~(-6) mm~3/(N·m)之间(未添加石墨烯的试样位于0.42×10~(-6)~0.82×10~(-6)mm~3/(N·m)之间)。结论少量的石墨烯(0.2%~0.4%)可以显著提高铜基制动材料的硬度和弯曲强度,其中石墨烯含量为0.4%时,制成的制动材料的机械性能最佳,同时试样的摩擦系数稳定,磨损率较低。  相似文献   

20.
通过简单的磁力加热搅拌的混合方式制备了由长径比为15的短切碳纤维和丁四醇组成相变储热复合材料,研究了短切碳纤维质量分数对增强相变储热材料热导率的影响。实验结果表明短切碳纤维可以显著提高复合材料的热导率,对于含短切碳纤维质量分数为10%的试样,热导率相对于纯丁四醇提高了183%。同时,短切碳纤维的质量分数对复合材料热导率的影响与Nielsen模型的预测结果相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号