首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-ХMnХAl0.1(Х=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当Х=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

2.
在制备La-Ni-Co-Fe中间合金的基础上,采用机械合金化方法制备La0.7Mg0.3Ni2.8Co0.5-xFex(x=0,0.1,0.2,0.3,0.4,0.5)系列储氢合金,研究在不同球磨时间下储氢合金的物相、微观形貌和电化学性能及元素置换对其储氢性能的影响。结果表明:La0.7Mg0.3Ni2.8Co0.5合金的主相为LaNi5相,La0.7Mg0.3Ni2.8Co0.5-xFex系列储氢合金球磨40 h和80 h后,主相为LaNi5相和少量LaMg2Ni9相;且随着球磨时间的增加,合金晶粒变细小,La0.7Mg0.3Ni2.8Co0.5合金的最大放电容量呈变大的趋势,从142.4 mA.h/g增加到157.5 mA.h/g,La0.7Mg0.3Ni2.8Co0.2Fe0.3合金的最大放电容量从150.7mA.h/g增加到162.1mA.h/g,合金具有较好的循环稳定性能。  相似文献   

3.
采用真空电弧熔炼炉熔炼储氢合金La_(1-x)Sc_(x)Ni_(3.5)(x=0~1.0),且经真空退火炉1173 K退火1周。研究了Sc含量对该合金相结构、储氢及电化学性能的影响。结果表明,该合金组织均由La_2Ni_7、LaNi_5、LaNi和Sc_2Ni_7等相组成,随着Sc含量的增加,LaNi_5相逐渐减少,La_2Ni_7和Sc_2Ni_7逐渐增加。298 K下合金电极吸放氢平台压力逐渐升高,吸氢量呈先增后减趋势,x=0.3时最大吸氢量(0.651 wt%)、平台压力均适中。随x值增大,最大放电容量C_(max)和100次充放电循环容量保持率S100均呈先增加后减小的趋势.。x介于0.3~0.5时,电极综合电化学性能较好。合适的Sc含量并经退火热处理能有效改善合金电极循环寿命。但掺入过量Sc后,合金易形成难吸氢的Sc_2Ni_7相,这是电极容量不高的主要原因,这与PCT测试结果保持一致。  相似文献   

4.
采用X射线衍射方法、压力-成分等温线、电化学放电循环研究了AB5型La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8(x=0,0.1,0.2,0.3,0.5)合金中用Sn替换Co对其显微结构、储氢性能和电化学放电容量的影响。XRD、SEM及EDS测试结果表明,所有的合金都主要由La Ni5和Mg Ni2相组成,但随着合金中Sn含量的逐渐增加,出现LaNiSn相且显微结构得到细化。压力-成分等温线表明,随着合金中Sn含量的增加,合金的最大储氢容量从1.48%(x=0)降低到0.85%(x=0.5)。电化学测试结果表明,随着合金中Sn含量的增加,合金的最大放电容量从337.1 mA·h/g(x=0)降低到249.8 mA·h/g(x=0.5);充放电循环100次的放电容量保持率从70.2%(x=0)增加到78.0%(x=0.5)。  相似文献   

5.
采用铸造及退火工艺制备了La0.8-x Prx Mg0.2Ni3.35Al0.1Si0.05(x=0,0.1,0.2,0.3,0.4)电极合金。系统研究了Pr的替代对合金的结构与电化学储氢性质的影响,结果表明除少量残余LaNi3相外,铸造及退火合金是由六方Ce2Ni7型(La,Mg)2Ni7相与六方CaCu5型LaNi5相构成的。Pr对La的置换对合金的电化学储氢性质产生明显影响,铸造及退火合金的放电容量和高倍率放电能力随Pr含量的增加先升后降。当Pr含量由0增加至0.4时,铸造及退火合金的100次充放电循环后容积保持率S100从64.96%和72.82%分别增加至77.94%和91.81%。  相似文献   

6.
采用感应熔炼和热处理的方法制备La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75?xFex(x=0~0.20)合金,并研究合金的相结构和电化学储氢性能。全部合金均为单一的具有CaCu5结构的LaNi5相,LaNi5相的晶格常数a和晶胞体积随着x值的增加而增大。最大放电容量随着x值的增加从319.0mA·h/g(x=0)降低到291.9mA·h/g(x=0.20)。在1200mA/g的电流密度下HRD值从53.1%(x=0)降低到44.2%(x=0.20)。合金电极的循环稳定性随着x值的增加而增强,这主要归因于合金抗粉化能力的增强。  相似文献   

7.
采用三步感应熔炼法制备了La(1-x)MgxNi4.25Al0.75 (x=0.0,0.1,0.2,0.3) 储氢合金,对该系列合金的晶体结构和储氢性能方面进行了研究。晶体结构和相分析结果表明,当x=0.0和0.1时,合金由单一的LaNi4Al相组成;而x=0.2和0.3时,合金由LaNi4Al相, (La,Mg)Ni3相和AlNi3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

8.
对LaMg_(0.25)Ni_(4.0-x)Co_(0.75)Al_x(x=0~0.3)系列合金进行了快速凝固处理(15m/s),系统研究了该条件下Al部分替代Ni对合金相结构和电化学性能的影响。XRD分析结果表明,合金主要由La4MgNi19相(A5B19型)和LaNi5相(CaCu5型)相组成,两相的晶胞体积(V)和LaNi5相的相丰度均随x的增加而增大。电化学性能测试表明,x的增加,会使合金的活化性能、最大放电容量以及高倍率放电性能(HRD)下降,但循环稳定性有明显改善,如100次循环后的容量保持率(S100)从x=0的59.07%提高到了x=0.3合金的85.99%。研究认为,合金中较高吸氢相(A5B19型)随x的增加而减少是导致合金电极最大放电容量下降的主要原因,而循环寿命的改善则是由于Al含量的增加降低了合金颗粒的吸氢体积膨胀率,同时减小了两种吸氢主相在吸放氢过程中产生的内应力,从而降低了合金电极的粉化程度所致。  相似文献   

9.
采用中间合金法在感应熔炼炉中制备La_4MgNi_(19-x)Co_x(x=0~2)合金,研究Co部分替代Ni对合金相结构和电化学性能的影响。XRD测试结果表明:合金主要由La_4MgNi_(19)(Ce_5Co_(19)+Pr_5Co_(19))相和LaNi_5相组成;x的增加有利于促进La_4MgNi_(19)相的形成,且晶胞体积随之增大。显微组织观察发现,合金为树枝晶结构,x的增加会使树枝晶变细。电化学测试表明:合金均具有良好的活化性能和高倍率放电性能(HRD_(600)92.57%);随着x的增加,合金的最大放电容量明显提高(从x=0时的359.23 m A·h/g增大到x=2的380.85 m A·h/g),而循环寿命则先下降后逐渐提升。高倍率放电性能主要由合金电极的扩散系数控制,而循环稳定性的下降则是由于合金中La_4MgNi_(19)相的增加使膨胀率和晶间应力集中增大加速粉化所致。  相似文献   

10.
采用三步感应熔炼法制备了La_(1-x) Mg_xNi_(4.25)Al_(0.75)(x=0.0,0.1,0.2,0.3)储氢合金,研究了该系列合金的晶体结构和储氢性能。结果表明,当x为0.0和0.1时,合金由单一的La Ni4Al相组成;而x为0.2和0.3时,合金由La Ni4Al相,(La,Mg)Ni3相和AlN i3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

11.
采用不同的负极片制作方法制备了储氢Mm_(0.3)Ml_(0.7)Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3)合金电极,在夹片式三电极系统中,利用电化学性能测试方法对电极的活化性能、放电容量、高倍率放电能力等进行了测试。结果表明,采用干法时电极的5个平行样的放电容量均高于湿法且活化快,电极中羟基镍粉能有效降低活化次数;电极在所设计的成分范围内,随着电极中羟基镍粉含量的增加,电极的最大放电容量呈现上升趋势,对应成分电极的放电容量处于300~344 mAh/g,比湿法的容量增加3.8%~19.0%;添加不同质量分数的羟基Ni粉,能够有效的提高合金电极在不同大电流下高倍率放电能力;Mm_(0.3)Ml_(0.7)Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3)/200 wt%Ni电极的放电特性最好。  相似文献   

12.
研究了储氢合金(MlMg)Ni4-xCo0.7Znx(0≤x≤0.3)的气相储氢特性和电化学性能。结果表明,随着Zn含量的增加,合金吸、放氢(室温下)的平台压力降低,最大储氢量减少,分别从1.58%(x=0)减少到1.44%(x=0.2)、1.19%(x=0.3);合金的放电容量减少,分别从380mAh/g(x=0)减少到366mAh/g(x=0.1)、345mAh/g(x=0.2)、271mAh/g(x=0.3),但循环稳定性得到提高,经100次充放电循环后的容量衰减率从16%(x=0)降低到4%(x=0.3);适当控制Zn含量,既对合金的放电容量无大的影响,又可提高合金放电的稳定性,尤其是在大电流下放电的稳定性。  相似文献   

13.
为了研究Mg3MnNi2储氢合金的电化学储氢性能,实验采用Co元素部分取代Mg3MnNi2合金中的Ni,用固相扩散法制备出Mg3MnNi2-xCox(x=0~0.2)系列合金,并分析其相结构,以及测试合金的电化学性能和动力学性能。结果表明:Co元素的添加并不改变合金的主相,Co替代Ni明显改善了合金的放电容量、循环稳定性以及动力学性能等,其中当Co的含量从0增加到0.2时,合金的最大放电容量达到最大值282.36mA·h/g,20次循环后容量保持率仍有74.7%,而且动力学性能也是最优,高倍率放电性能ηHRD从66.4%增长到73.3%。这主要是Co替代Ni能够降低生成氢化物的稳定性,提高合金的抗粉化能力,以及降低合金的极化电阻。  相似文献   

14.
为了提高V基固溶体贮氢合金的充放电循环稳定性能,研究了O含量对V2-xTi0.5Cr0.5NiO x(x=0~0.35)合金的组织结构和电化学性能的影响。组织结构分析表明,当没有添加O时,合金主要由bcc结构的V基固溶体相和TiNi相组成,随着O含量的增加,合金中出现了Ti4Ni2O新相。电化学测试表明,随着O含量的增加合金电极的最大放电容量有所降低,从x=0时的366.8 mAh/g降低到x=0.35时的225.3 mAh/g,而较少氧含量时,合金电极的循环稳定性能明显得到了改善,从x=0时的69.9%增大到x=0.2时的83.7%,而后又降低到76.9%(x=0.35)。电化学动力学分析结果表明,合金的高倍率放电性能,交换电流密度和氢的扩散系数均随着O含量的增加先增加而后减小。  相似文献   

15.
采用真空感应熔炼方法制备了La0.63Gd0.2Mg0.17Ni2.85Co0.3Al0.15和La0.63Gd0.2Mg0.17Ni3..05Co0.3Al0.15贮氢合金,并在氩气气氛中和900℃进行退火处理,通过X射线衍射(XRD)、显微电子探针(EPMA)分析方法和电化学测试分析研究了不同化学计量比对合金微观组织和电化学性能的影响。研究结果表明,该系列合金退火组织主要由Ce2Ni7+Gd2Co7型、Pr5Co19型﹑PuNi3型和CaCu5型相组成,AB3.3中Ce2Ni7+Gd2Co7型相明显比AB3.5减少。电化学测试分析表明,不同的化学计量比对合金电极活化性能影响不大,AB3.5合金的最大放电容量大于AB3.3合金。AB3.5合金的循环稳定性明显高于AB3.3合金,经100次充放电循环后其电极容量保持率S100分别为90.2%和83.7%,其中AB3.5合金具有最好的综合电化学性能。  相似文献   

16.
研究设计了La1.5Mg0.5Ni7.0(Ti Ni3)0.1储氢合金的成分,用高频感应熔炼炉熔炼了该合金,将铸态合金在真空管式炉中采用充入氩气气氛900℃退火处理,分别保温1、2、5、12 h后随炉冷却。对该合金进行XRD测试并用Rietveld方法拟合分析。结果表明,铸态和退火合金均由Ce2Ni7和Gd2Co7型的(La,Mg)2Ni7相以及La Ni5相组成。随着退火时间的增加,合金主相由(La,Mg)2Ni7相变为La Ni5相。同时,含有Mg元素的Ce2Ni7、Gd2Co7型相的晶胞体积呈减少趋势,而La Ni5相晶胞体积变化不大。  相似文献   

17.
采用电弧熔炼制备LaNi4.1Al0.3Mn0.4Si0.2Fex(x=0~0.4)储氢合金,借助XRD、SEM等分析LaNi4.1Al0.3Mn0.4Si0.2Fex合金的晶体结构和相组成,并研究合金的电化学性能。结果表明:合金主要由LaNi5单相组成,当x≥0.1时,在LaNi5主相上分布着些许灰色的第二相。随着LaNi4.1Al0.3Mn0.4Si0.2Fex(x=0~0.4)合金中Fe的加入量增加,合金最大放电容量由295.4mAh/g(x=0)降低到278.2mAh/g(x=0.4),活化次数也由10次增加到18次。同时合金200次循环后的容量保持率却由66.85%(x=0)提高到93.33%(x=0.4)。  相似文献   

18.
应用铸造及快淬工艺制备了La0 7Mg0.3Co0.45Ni2.55-xCux (x=0, 0.1, 0.2, 0.3, 0.4)贮氢电极合金,研究了快淬工艺对合金微观结构及电化学性能的影响.XRD,SEM及TEM的分析结果表明,铸态及快淬态合金具有多相结构,包括(La,Mg)Ni3相,LaNi5相以及LaNi2相.快淬对合金的相组成没有明显影响,但显著地改变了合金的相丰度.快淬还显著地改善合金的成分均匀性,并使合金的晶粒明显细化.电化学测试的结果表明,快淬大幅度提高合金的电化学循环稳定性,但使合金的放电容量和活化性能下降.快淬对合金的放电电压特性具有明显的影响,当淬速大于15m/s时,快淬降低合金的放电电压,并使放电平台的斜率明显增大.  相似文献   

19.
通过真空感应熔炼法制备了LaNi5-xAlx (x=0, 0.25, 0.75, 1.2)储氢合金,并对其微观结构、力学性能、循环吸放氢性能及抗粉化性能进行了研究。结果表明,Al元素的加入能够明显改善合金晶体结构稳定性和储氢容量稳定性;随着Al含量的增加,合金的抗粉化性能呈现先减弱后增强的趋势;合金的力学性能和储氢容量共同影响着其抗粉化性能,其中力学性能是最主要的影响因素;在普通高纯氢气氛下,LaNi5-xAlx (x=0~1.2)合金的容量衰减主要是由于材料自身原因造成,很可能是发生了歧化反应  相似文献   

20.
研究了CeMn0.25Al0.25Ni1.5+x(x=0.0,0.3,0.5,0.7,0.9,1.1)超化学计量比合金的相结构和电化学性能。XRD、SEM和电化学性能测试结果表明:CeMn0.25Al0.25Ni1.5+x(x=0.0,0.3,0.5,0.7,0.9,1.1)合金主要含有六方的CeAl相和立方的CeNi相,合金的粒径随x值的增大而变大。Ni的超化学计量比添加能够大大提高合金的电化学活性,298K时,合金的放电容量从x=0.0时的118.3mAh/g提高到x=1.1时的200.7mAh/g;338K时,其放电容量随x值增大呈先增后减的趋势,x=0.0合金的放电容量为170.4mAh.g-1,当x=0.9时,放电容量出现最大值271.4mAh/g。合金电极的P-C-T曲线表明:随Ni超化学计量的增加,合金的平衡氢压平台斜率变小,宽度增大,平衡氢压升高,这可能是使合金电极放电容量增加的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号