首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
超高性能混凝土(UHPC)通常采用蒸汽和蒸压养护,更适合于桥梁等预制结构的工程应用,但也限制了其在建筑结构领域的发展。以现浇施工性和环境养护为目标,配制出适合于结构应用的超高性能混凝土。研究了水胶比、钢纤维类型和钢纤维掺量对于超高性能混凝土受压强度的影响。结果表明,水胶比越低,新拌浆体内部更加致密,UHPC的受压强度越高;端钩型钢纤维与混凝土浆体之间的黏结力更强,可获得较直线型纤维UHPC更高的受压强度。随着纤维掺量的增加,UHPC受压强度也随之增加,建议不超过3%掺量。此外,为了研究UHPC在现浇状态下的流动性和施工性,进行了UHPC塌落度试验。结果表明,水胶比0.16、掺入3%钢纤维的新拌混凝体浆体的塌落度为242 mm,流动性能良好。  相似文献   

2.
为研究水胶比、减水剂和矿物掺合料掺量对超高性能混凝土(UHPC)工作性能的影响以及水胶比、矿物掺合料和钢纤维掺量对UHPC力学性能的影响,分别进行净浆流动度试验和UHPC抗折、抗压强度试验。结果表明:提高水胶比和增加粉煤灰掺量可以改善浆体的流动性,但会降低UHPC的抗折强度和抗压强度;增加矿渣粉掺量可以在改善浆体流动性的同时,提高UHPC后期的抗折强度和抗压强度;随着硅灰掺量的增加,浆体的流动性不断降低,而UHPC的抗折强度和抗压强度呈现先上升后下降的趋势,当硅灰掺量为25%时,UHPC的强度达到峰值,抗折强度和抗压强度分别提高23.7%和32.0%;钢纤维掺量的增加会提高UHPC强度,当掺入2%的钢纤维时,UHPC的抗折强度与抗压强度分别提高39.7%和59.1%。综合考虑,建议硅灰掺量在20%~30%之内为宜,矿渣粉掺量不超过30%,粉煤灰掺量不超过20%,钢纤维掺量宜取2%。  相似文献   

3.
《广东建材》2021,37(7)
为研究钢纤维掺量对超高性能混凝土裂缝扩展行为的影响,利用3D-DIC定量评价超高性能混凝土裂缝扩展规律。首先利用三点弯曲试验测试纤维掺量对UHPC弯曲性能影响。然后利用3D-DIC监测弯曲荷载作用下UHPC裂缝扩展行为。实验结果表明:钢纤维显著改善了UHPC的抗压强度和劈裂拉伸强度,随着纤维掺量的增加,抗拉强度和劈裂拉伸强度呈现出先增大后减小的趋势,当纤维体积掺量为2.0%时,其抗压和劈裂拉伸强度达到最大值。当V_f=0.5%时,荷载-挠度曲线呈现"挠度软化"现象,P_(LOP)P_(MOR);V_f≥1.0%时,荷载-挠度曲线呈现"挠度硬化"现象。随着纤维掺量的增加,裂缝扩展路径曲折程度增加,裂缝开口位移逐渐增大。  相似文献   

4.
文中通过采用普通河砂替代石英砂及掺入粗骨料,研究其对超高性能混凝土(UHPC)基本性能的影响,制备出性能良好、成本较低的UHPC,以推动UHPC在土木工程中更广泛的应用。试验结果表明,随着河砂掺量的增加,UHPC的工作性能逐步提高,UHPC的力学性能先升高后降低,河砂掺入30%时抗压强度、抗折强度达到最大值,UHPC的抗拉强度不断降低,UHPC的耐久性能因抗氯离子渗透性能的提高而更加优异;河砂掺量50%、粗骨料体积掺量15%的UHPC的工作性能、抗折强度、抗拉强度及耐久性能有所降低,但其抗压强度提高明显,具有一定实用性。  相似文献   

5.
为解决超高性能混凝土胶凝材料用量高,能耗高的问题,在制备超高性能混凝土(简称UHPC)时可用玻璃粉替代部分胶凝材料,在减少水泥、硅灰等胶凝材料用量的同时,促进废弃玻璃的再利用。通过试验研究了玻璃粉掺量、外加剂掺量和纤维类型及掺量对掺玻璃粉超高性能混凝土基本性能的影响。试验结果表明:掺加10%玻璃粉时抗压强度提高最多,玻璃粉掺量对流动性影响较小。UHPC对外加剂较为敏感,制备时应保证外加剂的同一性。消泡剂能够很好的消除材料气孔,增加流动度,建议掺量为0.3%。圆直型钢纤维比端钩型钢纤维对UHPC的抗压强度提升更高,但抗折强度不及端钩型。在保证UHPC流动度的前提下,建议钢纤维的掺量不超过2%。玄武岩纤维可有效提高UHPC的抗折强度,但对抗压强度影响不大,且会减少材料的流动性。研究结果对减少UHPC能耗,解决废玻璃再利用,促进UHPC工程应用具有积极的意义。  相似文献   

6.
为了探究改善超高性能混凝土(UHPC)高温性能的措施,从力学性能、质量损失、超声检测等方面研究了纤维(不掺纤维、单掺钢纤维、混掺钢纤维与合成纤维)对UHPC高温性能的影响.结果表明:当纤维掺量增加时,UHPC的工作性与抗压强度均随之下降,抗折强度则先升后降;随着目标温度的升高,UHPC的残余抗压强度先升后降,损伤逐步加...  相似文献   

7.
研究了不同规格及掺量的钢棉对超高性能混凝土(UHPC)工作性和力学性能的影响。结果表明:钢棉的掺入降低了UHPC的流动性和抗拉性能,但合适规格及掺量的钢棉可显著提升UHPC的抗压强度和抗折强度。  相似文献   

8.
通过超高性能纤维混凝土坍落度和力学性能试验,研究了纤维种类和掺量对其工作性和弯拉性能的影响,并探讨了钢纤维与聚乙烯醇纤维的混杂效应对其抗压强度、折压比和拉压比的影响。结果表明:纤维明显降低超高性能混凝土的工作性;超高性能纤维混凝土的抗压强度随钢纤维的掺量提高变化不大,随聚乙烯醇纤维的掺量增大而显著降低;钢纤维和聚乙烯醇纤维均能改善超高性能混凝土的弯拉性能;超高性能钢-聚乙烯醇混杂纤维混凝土对超高性能钢纤维混凝土的折压比和拉压比的增益比随着钢纤维掺量的提高而增加,钢纤维与聚乙烯醇纤维在改善超高性能混凝土弯拉性能上具有良好的协同效应。  相似文献   

9.
《混凝土》2016,(5)
通过超高性能纤维混凝土坍落度和力学性能试验,研究了纤维种类和掺量对其工作性和弯拉性能的影响,并探讨了钢纤维与聚乙烯醇纤维的混杂效应对其抗压强度、折压比和拉压比的影响。结果表明:纤维明显降低超高性能混凝土的工作性;超高性能纤维混凝土的抗压强度随钢纤维的掺量提高变化不大,随聚乙烯醇纤维的掺量增大而显著降低;钢纤维和聚乙烯醇纤维均能改善超高性能混凝土的弯拉性能;超高性能钢-聚乙烯醇混杂纤维混凝土对超高性能钢纤维混凝土的折压比和拉压比的增益比随着钢纤维掺量的提高而增加,钢纤维与聚乙烯醇纤维在改善超高性能混凝土弯拉性能上具有良好的协同效应。  相似文献   

10.
龚泳帆  杨建明  董虎  张垚  吴正光  王露 《混凝土》2023,(7):91-96+103
超高性能混凝土(Ultra high performance concrete,UHPC)是一种具有高强度、高韧性及优良耐久性的水泥基复合材料。研究了UHPC常用原材料组分及玄武岩纤维(Basalt fiber,BF)对UHPC流动性及力学性能发展的影响。试验研究结果表明:纤维的掺入使得UHPC流动性降低,且随着纤维掺量的增加,流动度逐渐减小,使用1%掺量的12 mm BF的试样获得最佳的抗压强度、抗折强度及良好的流动度;在标养情况下,UHPC的性能受水灰比影响较大,随着水灰比增大,UHPC新拌物流动性增加,强度逐渐减小;UHPC流动度随着灰砂比增大而增大,强度则表现为1∶1.2时最佳;硅灰掺量对UHPC性能影响相对较小;矿渣粉可考虑作为较佳的矿物掺合料选择。综合分析原材料组成为12 mm纤维掺量1%、水灰比0.17、灰砂比1∶1.2、硅灰掺量12.5%、减水剂掺量1.5%时UHPC性能最佳。  相似文献   

11.
综述了超高性能混凝土(UHPC)的力学性能和耐久性能,从抗压、抗拉等力学性能和抗冻、抗离子渗透侵蚀等耐久性能方面进行了分析,结果表明:超高性能混凝土(UHPC)作为一种新型纤维增强水泥基复合材料,具有超高的力学性能和耐久性能,抗压强度高、抗氯离子渗透和抗硫酸盐侵蚀能力强和优异的韧性和断裂能,拥有广阔的发展前景。  相似文献   

12.
超高性能混凝土(UHPC)是一种力学性能超高、耐久性能优异、体积稳定性优良的新型水泥基复合材料,本文介绍了这种新型复合材料基本制备原理,介绍采用水泥、石英砂、矿物掺合料等常用建筑原材料配制出超高性能的混凝土,并通过对比试验,研究了矿物掺和料种类、纤维掺量以及养护工艺对超高性能混凝土抗压、抗折强度的影响,确定了最佳配合比。实验结果表明:此超高性能混凝土(UHPC)流动性好,在高温环境养护下,试件抗压强度达到325MPa,抗折强度达54MPa;在自然条件下养护,试件30天抗压强度为187MPa,抗折强度为35MPa。本文继而探索该种超高性能混凝土在预应力结构工程方面的应用,将其替代钢制锚垫板和其它产品,采用其制备出的预应力构件,各项性能指标均满足技术要求,并且成本显著降低,为超高性能混凝土在预应力结构工程方面的推广应用奠定基础。  相似文献   

13.
本试验研究了直线型、端勾型两种不同外形及不同规格的钢纤维对超高性能混凝土的抗压强度和抗拉强度的影响。结果表明:当细纤维掺量2%和粗纤维掺量为2%时,对UHPC抗弯拉强度增强效果最好。  相似文献   

14.
《混凝土》2016,(2)
超高性能混凝土(UHPC)是指抗压强度大于100 MPa,各项性能都十分优良的一种混凝土材料,但由于其内部钢纤维、石英砂等原材料成本过高限制了其推广应用。通过常规工艺条件,降低钢纤维掺量,采用常规河砂,碎石等替代型原材料制备经济型UHPC,并对其力学性能、耐久性能及微观结构进行了试验研究。试验结果表明:相比于普通C50混凝土,UHPC的力学性能及耐久性能大幅提高,通过常规原材料也能制备出经济型UHPC。  相似文献   

15.
制备工艺对再生骨料混凝土性能的影响   总被引:2,自引:1,他引:1  
考虑水灰比为0.50、0.25及用量只有最前者一半的水泥净浆浸泡再生粗骨料混凝土制备工艺、普通工艺和两阶段制备工艺,测定了由其拌制的再生混凝土的性能。结果发现,水灰比为0.50的全部水泥净浆浸泡再生骨料制备工艺,可提高再生混凝土28 d的抗压强度,但效果并不显著;56 d抗压强度反而有所降低,这两种龄期的劈拉强度均较低,且抗压强度离散性大;水灰比为0.25的全部水泥净浆浸泡再生骨料制备工艺,抗压、拉强度均最低,抗压、拉强度离散性大。用量一半的水泥净浆浸泡再生骨料工艺,有较高的抗压、拉强度,且强度离散性较小,但不及普通工艺和两阶段制备工艺。两阶段制备工艺不但能提高再生混凝土的抗压强度、劈拉强度,还能改善其工作性能,且强度离散性小,是制备再生混凝土的一种最优工艺。由普通工艺制备的再生混凝土,抗压、抗拉强度值均较高,强度离散性也较小,且工艺简单,也是一种较好的制备工艺。  相似文献   

16.
超高性能混凝土(UHPC)具有优异的强度、韧度、耐久及抗裂性能。但UHPC在高温下易发生爆裂,由此可能严重影响其力学性能。对高温后UHPC的残余受压性能进行了试验研究。试验参数包括受火温度、纤维类型和养护条件。评估了UHPC高温后的抗压强度、弹性模量和应力-应变关系。结果表明,随着受火温度的升高,UHPC的残余抗压强度和弹性模量逐渐下降,延性逐渐提高。无纤维试件和POM纤维掺量较少试件(0.33%)在500℃时发生完全爆裂。与这两类试件相比,UHPC中添加钢纤维和0.33%含量的PP纤维可显著提高混凝土的残余受压性能及降低爆裂风险。利用这些数据,提出以温度为变量表示的UHPC高温后残余受压性能的函数关系,以评估UHPC结构的耐火性。  相似文献   

17.
通过ABAQUS对织物增强混凝土拉伸性能及其永久模壳加固混凝土柱的轴压性能进行了数值分析,在材料层面研究了短纤维掺量、纤维织物层数对水泥基复合材料(ECC)和超高性能混凝土(UHPC)拉伸性能的影响;在结构层面研究织物增强超高性能混凝土模壳对不同强度核心区混凝土的约束效率及纤维织物和短纤维间的替代关系.结果表明:织物合...  相似文献   

18.
针对适合3D打印施工的超高性能混凝土(UHPC)的配制及性能进行了研究,研究了硅灰、粉煤灰和矿渣粉3种掺合料的掺量、砂胶比、水胶比对UHPC流动性和抗折、抗压强度的影响,以及钢纤维对UHPC强度和单轴拉伸性能的影响.结果表明:硅灰、粉煤灰、矿渣粉的掺量分别为5%、10%、10%,砂胶比为1:0,水胶比为0.17时,制备...  相似文献   

19.
该文研究了复掺氧化石墨烯(GO)与钢纤维对超高性能混凝土(UHPC)力学性能、流动性能、耐久性能的影响规律。研究结果表明:GO复掺钢纤维可以明显提高UHPC的抗压强度,但是会降低工作性。随着钢纤维掺量的增加,UHPC的流动度逐渐降低。复掺GO与钢纤维可以提高UHPC的抗氯离子渗透性能,降低干燥收缩,提高抗硫酸盐侵蚀性能。  相似文献   

20.
通过对不掺硅灰的新型超高性能混凝土的力学性能试验,分析了养护条件、钢纤维掺量和振捣方法对UHPC材料基本力学性能的影响。研究表明:用超细水泥替代硅灰可以制备出性能优良的新型UHPC;钢纤维体积掺量从0提高到1%、1.5%、2%、3%时,立方体抗压强度分别提高8.6%、17.5%、27.5%、35.7%,轴心抗压强度分别提高8.2%、21.5%、35.9%、43.3%,弯曲初裂强度分别提高9.6%、25.0%、41.1%、74.2%,钢纤维掺量对UHPC材料弯曲初裂强度的提高明显优于对抗压强度的提高;随着养护温度的提高,新型UHPC的力学性能得到明显的提高,且早期强度提高较快;浇筑时采用振动台振捣与自密实UHPC相比,材料的抗压强度和弯曲韧性均有所提高,但轴拉强度有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号