首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用室温拉伸性能测试、示差扫描量热分析、金相分析以及透射电镜分析,研究了2124铝合金热轧厚板在不同固溶温度与固溶时间处理下的拉伸力学性能、显微组织及其变化规律。结果表明:适当升高固溶温度或延长固溶时间,晶粒中未溶第二相较少,可提高合金的固溶程度,从而提高合金的强度,但过高固溶温度或过长固溶时间会使晶粒有长大的倾向,使合金的伸长率降低。根据试验结果确定了该合金的最佳固溶温度为498℃,固溶时间为80 min。  相似文献   

2.
固溶处理对7B04铝合金组织和性能的影响   总被引:1,自引:1,他引:1  
通过显微组织观察、拉伸力学性能测试、XRD衍射物相分析以及α(Al)基体点阵常数的测量等方法研究了固溶处理对7B04铝合金组织和性能的影响.结果表明:在410~470℃范围,随固溶温度升高和时间延长,由于粗大的平衡相逐渐回溶,合金的强度逐渐升高;进一步提高固溶温度或延长固溶时间,合金强度逐步降低.7B04铝合金的优选固溶处理制度为470℃×60 min.  相似文献   

3.
针对7A04-T6铝合金的二次固溶工艺进行了试验研究。采用光学显微镜、扫描电子显微镜、万能拉伸试验机、显微硬度计等研究了二次固溶处理工艺对7A04铝合金自然时效组织和性能的影响,并讨论了其影响规律和影响机制。研究结果表明:提高固溶温度或延长固溶时间均能显著提高7A04-T6铝合金自然时效后的力学性能;较高的固溶温度有利于缩短达到相同固溶效果所需的固溶时间;当固溶温度超过485℃,且固溶时间超过60 min时,合金的强度、硬度增大,伸长率下降。而固溶温度的提高或时间的延长,合金的第二相面积分数逐渐减小,而平均晶粒尺寸增大,合金组织发生再结晶;固溶温度过高或固溶时间过长,将促进过渡相(θ'相)向稳定相(θ″相)转变,影响合金性能。  相似文献   

4.
固溶温度对6061铝合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)等分析手段,研究固溶温度对6061铝合金热挤压板材的显微组织、力学性能及拉伸断口形貌的影响.结果表明,实验合金的强度和硬度随着固溶温度的升高而提高,当基体有轻微过烧时强度并没有降低;实验合金的最佳固溶工艺为565℃×40 min.XRD物相分析表明,在固溶处理过程中发生溶解的析出相粒子主要为Mg2Si,而残留的粗大析出相则主要是富Fe化合物.通过基体点阵常数的精确测量可以很好的表征合金的固溶程度.固溶处理后残留的析出相粒子是影响合金拉伸断口形貌的主要因素.当固溶温度低于535℃时,合金的断裂属于单一的韧窝断裂;当固溶温度高于535℃时,合金的断裂是由沿晶脆性断裂和韧窝断裂组成的混合断裂.  相似文献   

5.
采用金相显微镜、扫描电镜和硬度测试等手段,研究了固溶和时效热处理对Mg-Nd-Zr合金组织和性能的影响。结果表明,合金经460~520℃固溶处理后,随着固溶温度的升高和保温时间的延长,铸态组织中晶界上的化合物逐渐溶解,当固溶温度过高和保温时间过长时,晶粒长大。合金经490℃×8h固溶处理后时效,随着时效时间的延长,固溶时残留的第二相逐渐溶解,均匀析出第二相,合金硬度逐渐增大,达到峰值后进入过时效阶段,析出的第二相变大,硬度值下降。Mg-Nd-Zr合金的最佳热处理工艺为经490℃×8h固溶处理后,进行225℃×4h时效。  相似文献   

6.
《铸造技术》2017,(6):1335-1337
研究了形变后的6082铝合金热处理工艺参数对其组织和性能的影响。结果表明:合金固溶时效后获得大量均匀分布的Mg_2Si强化相;随着固溶温度升高、固溶时间和时效时间的延长,合金时效后的硬度呈现出先升高后降低的趋势。6082铝合金较适宜的热处理工艺参数为555℃×4 h固溶水淬+175℃×10 h时效处理。  相似文献   

7.
研究了固溶及时效处理对La变质4004铝合金组织及性能的影响。结果表明:随着固溶温度的升高、固溶时间的延长,合金中共晶硅熔断并粒化,500℃固溶6 h时性能达到最佳;随着时效温度的升高、时效时间的延长,合金硬度先升高后降低,时效温度为200℃、时效时间6 h时其硬度达到最高值112 HBW。变质4004铝合金最佳热处理工艺为:500℃×6 h固溶+200℃×6 h时效。  相似文献   

8.
采用金相观察、力学性能测试等方法,研究了固溶处理对7021铝合金板材显微组织与力学性能的影响。结果表明,随固溶温度的升高和保温时间的延长,合金的未溶相逐步溶入基体,经120℃×24h人工时效后,合金强度逐渐提高,380℃×40min固溶时合金强度最高。而随着固溶温度进一步升高或固溶时间不断延长,合金中纤维状组织发生再结晶,晶粒不断长大,合金强度降低,伸长率提高。7021铝合金的最佳固溶处理工艺为380℃下保温40min。  相似文献   

9.
通过显微组织观察、力学性能测试等方法研究了固溶处理对6xxx/7xxx铝合金复合板材显微组织和性能的影响。结果表明:在470~510℃范围内,随着固溶温度的升高和固溶时间的延长,包覆层合金中的粗大相逐渐溶入基体中,固溶强化效果增强;而进一步提高固溶温度或延长固溶时间,芯层合金晶粒逐渐长大,合金强度降低。6xxx/7xxx铝合金复合板材的最佳固溶处理工艺为495℃×40 min,在此条件下,获得的力学性能和阳极氧化性能较好。  相似文献   

10.
采用OM、SEM和拉伸试验等研究了固溶温度和固溶时间对新型镍钴基高温合金组织及力学性能的影响。结果表明,晶粒尺寸变化与一次γ′相含量变化一致,固溶温度低于1110℃时,随着固溶温度升高或固溶时间延长,残留的一次γ′相钉扎晶界,晶粒尺寸增加较缓。固溶温度为1110℃时,延长固溶时间至4 h时,一次γ′相基本回溶,晶粒尺寸迅速增加,进一步延长固溶时间至6 h时,晶粒尺寸增加减缓,即合金中一次γ′相的全溶温度为1110℃。合金在1100℃固溶4 h和双级时效处理(670℃×24 h,空冷+780℃×16 h,空冷)后的抗拉强度和屈服强度达到最大值,分别为1584 MPa和1104 MPa。因此,合金的固溶温度宜选取为1100℃,固溶时间宜选取为4 h。  相似文献   

11.
对喷射成形6061铝合金的热处理工艺进行研究,采用硬度测试、拉伸试验和透射电镜等研究固溶温度、时效温度和时效保温时间对合金显微组织和力学性能的影响规律。结果表明:随固溶温度的升高,合金硬度也随之升高,而其抗拉强度、屈服强度和断后伸长率则先增大后减小;合金硬度、抗拉强度和屈服强度随时效温度的升高先增大后减小,断后伸长率却一直减小;合金硬度、抗拉强度和屈服强度曲线随时效温保温时间的延长呈驼峰状变化,断后伸长率则变化不大,只在17 h时有所增大;喷射成形6061铝合金的最佳热处理工艺为530℃固溶1 h+175℃时效8 h。  相似文献   

12.
采用宏观检测与显微分析相结合的手段,研究不同停放时间下6061铝合金的力学性能与微观组织的变化规律。结果表明:停放时间对6061铝合金的晶粒尺寸有较大影响,晶粒尺寸呈先增大后减小的趋势;停放时间对6061铝合金弹塑性变形过渡阶段有较大影响,但对弹性及塑性阶段变形的影响很小。6061铝合金在停放为0~2 h时,力学性能无明显变化,变形后试样表面光滑,变形协调性较好;停放时间为12 h时,材料的抗拉强度和屈服强度降至最低,但伸长率提高,试样表面呈橘皮形貌,变形均匀性较差;停放时间为24 h^15 d时,合金的强度回升并逐渐趋于稳定。结果表明:随着停放时间的增长,6061铝合金断口的韧窝直径和深度不断增加,第二相粒子的尺寸也不断增大,形状由球状、带状逐渐转变为板状、块状。通过研究得到6061铝合金满足汽车结构强韧化需求,综合性能最优需求的停放时间为12~24 h。此研究结果能够为6061铝合金加工工艺优化提供理论指导。  相似文献   

13.
采用高温拉伸试验、金相显微镜、扫描电镜等方法研究了Si、Zr、Fe合金化对超薄铝合金翅片高温性能和组织的影响。结果表明,3003和改性3003铝合金(3003mod)的强度均随着拉伸温度的升高而降低,而伸长率均先增大而后降低。3003mod铝合金在500℃时屈服强度较3003合金提高了32.2%。合金化显著提高了3003mod铝合金中纳米颗粒数量,降低了粗大微米相数量,其组织特征抑制了高温拉伸过程中的二次再结晶形核,较3003合金晶粒更粗、长宽比更大。二次再结晶是导致500℃下两种合金的伸长率较300℃下的急剧减小的根本原因。  相似文献   

14.
采用中心组合设计(Central composite design, CCD)试验方法对选定温度下的6061铝合金固溶+双级时效处理工艺中的时间参数进行系统试验设计,结合力学性能测试结果得出时间参数与抗拉强度的可靠数学模型(r2=0.9078)。通过模型计算及方差分析结果可知二级时效时间对抗拉强度的影响十分显著且与抗拉强度呈负相关关系。据此得出最佳热处理工艺为550 ℃×108 min固溶+180 ℃×246 min峰时效+220 ℃×3 min二级时效,该工艺下6061铝合金的抗拉强度值为345 MPa,断后伸长率为13.5%。  相似文献   

15.
刘浩  肖铁忠  黄娟  高静 《锻压技术》2016,(6):142-145
为了研究双级固溶、双级时效处理下的固溶温度对7050铝合金的影响,采用常温拉伸、晶间腐蚀等方法研究了双级固溶、双级时效热处理制度下第二级固溶温度对7050铝合金组织和性能的影响。结果表明,随着第二级固溶温度的升高合金晶粒尺寸逐渐长大,残余第二相不断固溶。495℃时的S相基本固溶,残余第二相体积分数为0.19%,晶粒尺寸较小,合金屈服强度R_(eL)为655 MPa,抗拉强度R_m为694 MPa,伸长率A_(50 mm)为14.40%,综合力学性能最好。温度过高时合金发生过烧,性能减弱。晶间腐蚀从合金外部晶界开始向内部扩展,耐晶间腐蚀性能随着残余第二相的逐渐固溶而增强。  相似文献   

16.
通过金相分析、拉伸试验和晶间腐蚀试验,研究了固溶处理对Incoloy825合金组织和性能的影响。结果表明,随着固溶温度的升高,Incoloy825合金晶粒有长大趋势,但在不同温度固溶,晶粒生长速度有所不同,当固溶温度超过1000 ℃后,晶粒长大迅速,并伴生退火孪晶。当在950 ℃固溶时间小于30 min时,基体出现混晶组织,保温60 min后,混晶状态得以改善,基本为等轴晶,平均晶粒度为7级。随着固溶温度的升高和保温时间的延长,抗拉强度和屈服强度均有不同程度的下降,伸长率总体呈上升趋势。Incoloy825合金的晶间腐蚀速率随着固溶温度的升高和保温时间的延长呈现先下降后平稳的趋势,在950 ℃固溶60 min后,腐蚀速率基本稳定在0.12 mm/y左右,随着固溶温度继续升高,晶间腐蚀速率没有明显差异。Incoloy825合金在950 ℃固溶60 min后,其力学性能和耐晶间腐蚀性能综合效果最佳。  相似文献   

17.
在实验室中制备了试验用7B04铝合金,经铸造-均质化退火-热轧-中间退火-冷轧后制得7B04铝合金板材,并对合金板材进行了后续固溶时效处理,研究了固溶处理对其组织和性能的影响。结果表明,470 ℃×1 h固溶+120 ℃×21 h时效处理铝合金冷轧板材再结晶明显,有少量晶粒处于伸长状态,除粗大第二相粒子外,未发现细小第二相粒子,综合力学性能较好,抗拉强度为596 MPa,屈服强度为537 MPa,伸长率为14.88%。固溶温度达到480 ℃时,合金再结晶明显,但保温时间不能超过0.5 h,否则合金强度和塑性下降。  相似文献   

18.
采用光学显微镜、扫描电镜和拉伸试验机研究了高温短时固溶处理温度(475~480 ℃)与时间(0~7 min)对高合金化Al-Zn-Mg-Cu合金锻件组织与性能的影响。结果表明,高温短时固溶处理可有效提高时效态Al-Zn-Mg-Cu合金锻件的抗拉强度及断后伸长率。随着温度或时间的增加,晶界粗大残留第二相逐渐回溶至铝基体,当温度过高或时间过长时,等轴状晶粒发生粗化,组织发生过烧现象。经对比分析并结合实际生产状况,确定最适合的高温短时固溶处理制度为475 ℃×3 min。采用此制度时锻件45°方向抗拉强度最低,为685 MPa,LT向断后伸长率最低,为4.7%。  相似文献   

19.
剪应力状态下6061铝合金的力学性能及断裂行为   总被引:2,自引:0,他引:2  
对设计的拉伸剪切试样和原位拉伸剪切试样分别进行不同剪应变率下的拉伸剪切试验及原位拉伸剪切试验,研究6061铝合金在剪力状态下的力学性能及断裂行为,并用有限元软件ABAQUS对铝合金在剪应力状态下的断裂行为进行模拟。结果表明:随着剪应变率的增大,6061铝合金的剪切屈服强度和抗剪强度基本保持不变,但剪切断裂应变明显减小;剪应变率对试样的断口形貌没有影响;6061铝合金晶界是其最薄弱环节,在拉伸剪切过程中铝合金试样表面上产生了大量与拉伸方向平行的滑移带;微裂纹在剪应力作用下形核于与拉伸方向平行的滑移带和晶界,随着剪应力的增加,微裂纹长大和扩展;微裂纹之间通过剪切而连接导致试样断裂;6061铝合金剪切断裂行为可以用Johnson-Cook模型进行描述。  相似文献   

20.
采用OM、SEM和力学性能测试等分析研究了不同热处理工艺对选区激光熔化成形GH3536合金组织及力学性能的影响规律。结果表明,随着固溶温度越高,晶粒尺寸越大,且抗拉强度在高温条件下逐渐增加而室温条件则下降。当固溶温度达到1120 ℃时,室温条件下横向试棒与纵向试棒的抗拉强度分别达到816和731 MPa;900 ℃高温条件下则分别达到189和204 MPa。800 ℃时效处理后合金基体组织析出细小碳化物,产生第二相强化作用,强度得以提升。随着时效时间的增加,碳化物变的密集,但晶粒尺寸几乎没有发生变化,表现为室温抗拉强度与断后伸长率得到提升。当时效时间达到20 h时,室温条件下横向试棒与纵向试棒的抗拉强度分别达到832和747 MPa;900 ℃高温条件下横向试棒与纵向试棒的断后伸长率分别达到8.5%和21.5%。最后得出选区激光熔化成形GH3536合金最优的热处理工艺为:固溶(1120 ℃×1 h)+时效(800 ℃×20 h)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号