首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用草酸共沉淀法和高温固相法相结合的方法成功合成了LiNi0.6Co0.2Mn0.2O (NCM622)三元锂离子正极材料,通过先用水热合成草酸钴锰前驱体,然后再与镍盐、锂盐进行高温固相反应,避免了Ni2+、Co2+、Mn2+在草酸中沉淀不均匀的问题.X射线衍射(XRD)分析结果表明,该材料具有典型的类似α-NaFeO2的层状结构以及低的阳离子混排.电化学性能测试结果显示,相比于商业镍钴锰酸锂(NCM-商业),NCM622表现出优良的循环稳定性和倍率性能,在0.1C下经850℃处理的NCM-850试样的初始放电容量为184.1 mAh g-1,高于NCM-商业的175mAhg-1,在0.2C循环100圈以后NCM-850的容量保持率为88.6%而NCM-商业的保持率仅为47.8%.在5C下NCM-850仍然具有98.1mAhg-1的容量.这主要归因于材料拥有更稳定的晶体结构和更宽的离子扩散通道.  相似文献   

2.
乙醇-水体系电沉积制备Ni(OH)2超级电容器正极材料的研究   总被引:3,自引:0,他引:3  
采用电化学共沉积技术在泡沫镍基体上制备了掺杂Co的Ni(OH)2电极,研究了乙醇与水体积比为3:7,1:1和7:3及水溶液情况下,C/Ni(OH),超级电容器的容量特性。XRD分析表明,所得产物为掺杂Co的a—Ni(OH)2;电池测试表明在乙醇与水体积比为1:1时,能获得最好的电化学充放电特性,在小电流4mA/cm^2充放电下,比容量达850F/g;在大电流32mA/cm^2充放电下,比容量可达600F/g,其比容量数值随循环次数增加逐渐趋于稳定。扫描电镜观察表明,乙醇与水体积比为1:1时所得电沉积Ni(OH)2呈细小的蜂窝状三维结构,增大了活性物质与电解液接触的比表面积,使电化学反应更加充分,提高了活性物质的利用率和放电比容量。  相似文献   

3.
锂离子电池正极材料LiNiO_2的合成   总被引:1,自引:0,他引:1  
介绍了以氢氧化锂和硝酸镍为原料,通过高温法合成氧化锂镍的方法,并讨论了合成条件对产物结构的影响。实验结果表明:反应温度、反应时间、反应气氛、Li/Ni摩尔比对产物结构有较大的影响,通过合成条件的优化得到了具有高结晶层状结构的LiNiO2。  相似文献   

4.
采用溶胶-凝胶法合成富锂正极材料,900℃煅烧12 h得到产物Li[Li0.2Ni0.15Mn0.55Co0.1-xCrx]O2-yCly。X射线衍射光谱(XRD)测试表明,材料均具有层状α-NaFeO2结构;扫描电镜(SEM)观察材料颗粒均匀,粒径达到纳米范围;充放电测试显示,Cl-、Cr3+共掺材料在2~4.8 V电压范围及0.1 C倍率下,20℃时,首次放电比容量达到239.8 mAh·g-1,首次库伦效率为81.2%;55℃时,首次放电比容量和首次库伦效率分别为308.3 mAh·g-1和92.7%。并且40个循环之后在1 C倍率下,材料在20和55℃时放电比容量仍分别达到173.5和207.7 mAh·g-1。  相似文献   

5.
将液相共沉淀法制备的Ni0.8Co0.iMn0.1(OH)2与LiOH·H2O混合,固相烧结合成微米级的LiNi0.8Co0.1Mn0.1O2正极材料.XRD谱表明,合成的LiNi0.8Co0.1Mn0.1O2正极材料为典型的α-NaFeO2层状结构,无杂质峰;从SEM像可以看出,产物颗粒为类球形,分散性好,由一次粒子紧密堆积而成,平均粒径为3 μm;电化学测试结果表明,在2.8~4.3 V电压范围内,750℃焙烧15h合成的LiNi0.8Co0.1Mn0.1O2材料的电化学性能最优,0.1C时,其首次放电容量为186.748mA·h/g,分别高于700和800℃时的首次放电容量172.947和180.235mA·h/g.材料在0.5和2C时循环40次后,容量保持率分别为98.32%和88.72%,循环性能良好.  相似文献   

6.
采用Pechini法在 80 0℃空气中焙烧 6h制备LiNixMn2 -xO4试样 (x =0 ,0 .0 5 ,0 .1,0 .2 ,0 .3,0 .4 ,0 .5 )。经XRD测试表明除LiNi0 .5Mn1.5O4以外 ,其它的试样均为纯净的尖晶石结构。尖晶石LiNixMn2 -xO4试样电极在 3.3~ 4 .5V以及 4 .5~ 4 .8V范围内的电化学性能测试表明 :在 3.3~ 4 .5V范围内 ,试样初始充放电容量随Ni元素掺杂比例的增加而降低 ;在 4 .5~ 4 .8V范围内 ,试样初始充放电容量随Ni元素掺杂比例的增加而增大 ;在 3.3~ 4 .8V范围内 ,试样总的初始容量基本不变 ;在 3.3~ 4 .5V范围内 ,试样的循环性能随Ni元素掺杂比例的增加而提高  相似文献   

7.
采用控制结晶法制备了Ni(OH)2纳米粉体.讨论了阴离子种类、pH值、加氨量等制备条件对Ni(OH)2纳米粉体性质的影响.应用XRD、TEM等微观分析手段对Ni(OH)2粉体的形态和结构进行了表征.结果表明在选择Ni(NO3)2为原料,溶液pH=11.0,加氨量控制在n(NH3)/n(Ni2+)=1.5,于50℃~60℃合成温度下反应30 min~40min,可获得晶型结构为β-Ni(OH)2,粉体颗粒的平均粒径为50nm~70 nm,形状为球形或类球形的纳米Ni(OH)2粉体.  相似文献   

8.
以控制结晶法合成的球形Ni0.8Co0.15Al0.05(OH)2.05为前驱体,采用加压氧化法制备锂离子电池正极材料LiNi0.8Co0.15Al0.05O2。利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、形貌及电化学性能进行表征。考察氢氧化锂与前驱体物质的量之比(锂配比)、在煅烧过程中的压力、温度和时间等因素对LiNi0.8Co0.15Al0.05O2材料结构及性能的影响。结果表明:锂配比为1.02时,在0.4 MPa氧气压力下,于700℃煅烧10 h制备的材料具有最完善的结构和最好的电化学性能;在2.8~4.3 V电压范围内,以0.2 C进行充放电,首次放电比容量达到190.1 mA.h/g,50次循环后容量保持率为90.2%,同时显示出良好的倍率性能和高温性能。  相似文献   

9.
通过固相烧结工艺,制备了铝掺杂的Li Mn2O4锂离子电池正极材料。其中球型化及鳞块状的Li Mn2O4分别由Al共沉积的锰氧化物(CMO)前驱体及电解二氧化锰(EMD)前驱体制备。通过X射线衍射仪、扫描电子显微镜、电感耦合等离子光谱仪及方型铝壳全电池充放电测试等手段对试样的物化指标进行了测试。结果表明两组试样都为纯相,同时以CMO为前驱体制备的Li Mn2O4材料具备较好的球型度,更高的振实密度以及更优异的电化学性能。  相似文献   

10.
Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能   总被引:1,自引:0,他引:1  
以Li2SiO3、Mn(CH3COO)2·4H2O和TiO2为原料,利用传统高温固相合成法成功合成出Li2Mn0.9Ti0.1Si04锂离子电池正极材料.采用XRD、FESEM等手段分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料样品的电化学性能.研究结果表明,固相合成的产物主相为Li2Mn1-x,TLSiO4,同时存在少量的杂质,掺杂Ti后,材料表面形貌从近球形转变为非球形颗粒,颗粒尺寸略有增大,为200~500nm.实验结果表明,Ti掺杂以后,Li2MnSiO4正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Ti掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

11.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:1,自引:1,他引:0  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料 L i Ni0 .5Co0 .5O2 ,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀 ,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应 ,并使反应产物粒度均匀和成分均匀。制备的 L i Ni0 .5Co0 .5O2 为单一的 α- Na Fe O2 层状结构 ,粉末粒度分布范围窄 ,平均粒径约为 8μm~ 10μm。电化学性能测试结果表明 ,在 0 .2 m A/cm2 充放电流密度和 3 .0 V~ 4 .2 V电压范围内 ,首次充电容量为 173 m Ah/g,放电容量为 14 8m Ah/g。循环次数达 3 0次时 ,放电容量还有 12 9m Ah/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的L i Ni0 .5Co0 .5O2 正极材料。  相似文献   

12.
介绍了一种新型的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的最新研究状况,描述了材料的晶体及电子结构,以及电化学性能;重点总结了现今国内外制备此材料的几种主要合成方法及研究进展;同时,介绍了不同掺杂元素(Fe、B、Al、Ti)对材料的改性作用。  相似文献   

13.
通过将钛片在含镍溶液中水热处理,在钛基体上直接生长Ni(OH)2纳米片阵列,并用于电化学检测葡萄糖.用X射线衍射(XRD)和扫描电镜(SEM)对样品进行了表征.研究了Ni(OH)2纳米片/钛片在NaOH溶液中的电化学性能.结果表明,该电极对葡萄糖的氧化具有良好的电催化作用,它对葡萄糖响应的线性范围为4.5×10-5~1.05× 10-3 mol/L,检出限为5μmol/L (S/N=3).  相似文献   

14.
采用液相共沉淀法和固相烧结法分别制备镍钴锰复合氢氧化物(Ni0.5Co0.2Mn0.3(OH)2)和LiNi0.5Co0.2Mn0.3O2正极材料。通过X射线衍射和电化学性能测试对所得样品的结构及电化学性能进行了表征。结果表明:LiNi0.5Co0.2Mn0.3O2具有很好的α-NaFeO2层状结构,以20 mA/g的电流密度在2.5~4.3 V的电压区间充放电时,最高首次放电比容量达175 mA.h/g,首次库伦效率在89%~90%之间。当首次放电比容量为160~170 mA.h/g时,30循环未见容量衰减。锂含量对其电化学性能影响的结果表明:锂含量(n(Li)/n(Ni+Co+Mn))在1.03~1.09的范围内,随着锂含量的增加,放电比容量略有减小,但循环性能、中值电压以及平台性能都得到提高;当锂含量超过1.09时,循环性能、中值电压以及平台性能开始降低。  相似文献   

15.
以蔗糖为碳源,利用溶液法在温和条件下合成Li2FeSiO4/C的前驱体,煅烧后得到纳米球形Li2FeSiO4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700°C煅烧9h得到的纳米Li2FeSiO4/C在室温、1.5~4.6V的电压范围内,于C/20倍率下前3次放电容量达到166mA·h/g,30次循环后容量仍保持有158mA·h/g,容量保持率达95%,表明其具有良好的电化学性能。  相似文献   

16.
以碳酸氢铵为沉淀剂采用共沉淀法合成球形Co0.9Ni0.05Mn0.05CO3前驱体,以碳酸盐前驱体和Li2CO3为原料,在空气中通过固相反应制备出LiCo0.9Ni0.05Mn0.05O2正极材料,研究烧结温度对产物结构及电化学性能的影响。采用扫描电镜(SEM)、X射线衍射(XRD)和光电子能谱(XRS)分别表征样品的形貌、结构和元素价态。结果表明:不同烧结温度下合成产物的性能差别很大,较适合的合成温度为900℃;在3.0~4.5 V电压范围内,LiCo0.9Ni0.05Mn0.05O2显示出较好的倍率性能;在25℃测试条件下,材料在0.2C、0.5C、1C、5C和10C时的放电比容量分别为181.6、178.3、173.9、167.8和157.1 mA·h/g。  相似文献   

17.
采用低温共沉淀-水热-煅烧法合成了锂离子电池Fe-Ni-Mn体系正极材料Li1+x(Fey/2Niy/2Mn1-y)1-xO2,并用XRD、SEM、ICP光谱和电化学性能测试对材料进行了表征.XRD测试和ICP分析表明,Fe、Ni取代Li2MnO3中的部分Mn,形成很好的固溶结构yLiFe1/2Ni1/2O2-(1-y)Li2MnO3 (y=0.l,0.2,0.3,0.4,0.5).SEM测试表明,取代量y不同,材料的表观形貌有所不同,y=0.4时材料的颗粒粒径均匀、较小,呈类球形结构.电化学性能测试表明,当y=0.4时,循环稳定性最好,充放电50次后放电比容量仍可维持在195.0 mAh/g,放电中值电压为3.5 V,y=0.4时样品在大倍率放电下的电化学性能表现良好.  相似文献   

18.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并考察了烧结温度对材料结构、表面形貌和电化学性能的影响.XRD和SEM测试结果表明,900℃下烧结得到的样品是粒径在0.3~0.5 μm范围的球形粒子,具有最佳的阳离子有序度;充放电测试结果表明,其在0.1C倍率下首次放电容量达到148.8...  相似文献   

19.
采用快速共沉淀法制备Ni0.8Co0.1Mn0.1(OH)2前驱体,利用前驱体与LiOH.H2O的高温固相反应得到锂离子电池层状正极材料LiNi0.8Co0.1Mn0.1O2,探讨pH值对材料结构和电化学性能的影响。通过X射线衍射(XRD)、扫描电镜(SEM)和电化学测试对合成样品进行表征。结果表明,pH值为11.00~12.00时,合成的Ni0.8Co0.1Mn0.1(OH)2前驱体均无杂相;pH值为11.50时,合成的前驱体制备出的正极材料具有良好的电化学性能,0.1C倍率下首次放电比容量为192.4 mA.h/g;经过40次循环,容量保持率为91.56%。  相似文献   

20.
采用液相共沉淀方法合成锂离子电池用Li(Ni3/8Co3/8Mn2/8)O2正极材料,以XRD、SEM、原子吸收光谱法和电池充放电循环测试方法表征Li(Ni3/8Co3/8Mn2/8)O2粉末的结构和性能.结果表明:900℃焙烧10 h合成的Li(Ni3/8Co3/8Mn2/8)O2粉末样品具有较好的综合电化学性能和良好的六角层状结构,阳离子混合度小,六角晶格有序性高,颗粒为由小晶粒结合而成的多晶体,平均粒径约为4.5 μm,I003/I104为1.25,R值为0.48,首次放电容量为172.9 mA·h/g(2.8~4.5 V,0.1C倍率),0.2C倍率循环20次后电容量为首次循环放电容量的96.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号