首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
制备了一种中等密度(约8.0 g/cm3)的难熔高熵合金Ti0.5Zr1.5NbTa0.5Sn0.2(摩尔比),系统研究了热处理温度对合金组织结构和力学性能的影响。结果表明:铸态Ti0.5Zr1.5NbTa0.5Sn0.2合金组织为富Zr和富Ta bcc相以及晶内的板条状Zr5Sn3。随着热处理温度升高,富Ta bcc相体积分数逐渐减少,Zr5Sn3体积分数先增加后减少。当热处理温度为1400℃时,样品呈现近单相bcc结构。准静态条件下,系列样品均具有良好的压缩塑性变形能力;随着热处理温度的提高,合金屈服强度逐渐上升,1400℃热处理样品的屈服强度为1749 MPa。动态变形时,合金表现出明显的应变率强化效应,屈服强度显著增加,1400℃热处理样品的屈服强度达到2750 MPa,塑性变形量有所下降。强度随...  相似文献   

2.
采用拉伸和硬度测试、扫描电镜和X射线衍射仪等手段,研究了不同Fe含量对挤压铸造Al-3.5Mg-0.8Mn合金显微组织和力学性能的影响。结果表明,Fe能改善合金的力学性能,合金中只存在Al6(FeMn)相。合金的抗拉强度和屈服强度随着Fe含量的增加而增大,伸长率随着Fe含量的增加而降低,原因是随着Fe含量增加,硬脆的Al6(FeMn)相增多。在挤压压力为75MPa和Fe含量为0.5%时,合金的综合力学性能最佳,其抗拉强度为252MPa,屈服强度为128MPa,伸长率为28%。  相似文献   

3.
采用真空电弧熔炼工艺制备了不同Al含量的AlxMo0.5NbTiVSi0.2(x=0.5,0.8,1.0,摩尔比)难熔高熵合金。研究了合金的相组成、微观组织、密度和力学性能。结果表明,AlxMo0.5NbTiVSi0.2高熵合金的微观组织为典型的树枝晶结构,均由BCC固溶体相和M5Si3金属间化合物相组成。Al含量的增加并未使得合金的相组成发生改变。合金BCC基体相富集Al、Mo和V元素,M5Si3相富集Ti和Si元素,Nb元素在两相中分布较为均匀。随Al含量增加,合金的密度从6.18 g/cm3降至5.86 g/cm3,硬度提升了13.7%,压缩屈服强度增加约332 MPa,增幅达到37%,抗压强度从1 073 MPa提高到1 457 MPa,断裂应变从13.6%增加到14.4%。合金力学性能的提升主要是通过固溶强化、细晶强...  相似文献   

4.
本文通过原位合成技术,成功制备了纳米ZrB2颗粒增强7085铝合金基复合材料。采用金相显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪进行表征,并进行力学性能测试,研究了ZrB2纳米增强体对7085铝合金的显微组织和力学性能的影响。结果表明,ZrB2纳米增强体可以显著提高7085铝合金的强度。但是随着增强体体积分数增大,ZrB2颗粒团聚现象加剧,不利于复合材料的塑韧性提高。同时,在复合材料中引入微量稀土元素Sc可使纳米ZrB2颗粒团聚现象得到改善,并进一步细化基体晶粒,使复合材料的强度和延长率都得到提高。当ZrB2含量为2%(体积分数)、Sc含量为0.4%(质量分数)时,复合材料的抗拉强度为534 MPa、伸长率为10.2%,相较于7085铝合金基体分别提高了17.4%、14.6%。  相似文献   

5.
研究了挤压Mg-4.0Sm-xCa (x=0.5, 1.0 and 1.5 wt%)合金经过200 oC等温时效处理后的显微组织、时效硬化行为和力学性能。结果表明,随着Ca的添加,在镁基体中形成针/棒状的Mg2Ca相、块状和颗粒状含Ca元素的Mg41Sm5相,合金的晶粒被细化、拉伸力学性能得到显著提高。在 T5(峰值时效)态下,Mg-4.0Sm-1.0Ca合金具有最细的晶粒尺寸,其大小约为 5.1 μm。随着Ca含量的增加,针/棒状的Mg2Ca相逐渐增多,当Ca含量达到1.5 wt%时,晶界处含Ca的块状Mg41Sm5相的量明显减少。在峰值时效态下,Mg-4.0Sm-1.0Ca合金具有最大的硬度值(82 HV)以及最佳的力学性能,其抗拉强度、屈服强度和延伸率分别达到了267 MPa, 189 MPa 和 24%。合金力学性能的提高主要归因于晶粒细化、固溶强化以及Mg2Ca相和Mg41Sm5相的析出强化。  相似文献   

6.
采用X射线衍射仪(XRD)、光学显微镜(OM)、硬度测试、压缩试验和电化学工作站等研究了Mo含量对Ti-20Zr-10Nb-xMo(x=0,3,6,9,wt%)合金相结构、显微组织、力学性能以及电化学腐蚀性能的影响。结果表明,随着Mo含量的增加,Ti-20Zr-10Nb-xMo合金的相结构发生了α′+β→α″+β→β的变化,平均晶粒尺寸亦随着Mo含量的增加而逐渐降低;当Mo含量为9%时,合金的平均晶粒尺寸约为45 μm。通过Mo的添加,合金的抗压强度和屈服强度呈现先降低后升高的趋势,而显微硬度则先增大后降低;当Mo含量为9%时,合金的抗压强度最大,为1610 MPa,压缩应变为50.9%。未添加Mo的试验合金的自腐蚀电流密度最小,为33.19 nA·cm-2,Rp值最大,为1531.52 kΩ·cm2,其耐腐蚀性最好。  相似文献   

7.
采用真空电弧熔炼制备了Al0.5Nb1.5TiV2Zr0.5高熵合金,并研究了其微观组织、密度及力学性能。结果表明,Al0.5Nb1.5TiV2Zr0.5合金由为90.6%(体积分数)的体心立方相和9.4%(体积分数)的C14-Laves第二相组成。合金基体相富含Ti和V,第二相富含Al和Zr。合金的密度为6284 kg/m3,维氏硬度为5197.9 MPa。合金的屈服强度随温度升高而降低,由室温下1082.9 MPa降低到1073 K下的645.0MPa。压缩应变由室温下的27.20%降低到873 K下的14.94%,这与合金中原子间的相互作用力随温度升高而降低有关。在1073 K时合金应变超过50%,表现出良好的塑性而未发生断裂。压缩测试结果表明,合金韧脆转变温度在873~1073 K之间。  相似文献   

8.
采用常规凝固技术制备了MgZn6xYx(x=0.7,1.0,1.5,2.0)合金,研究了Y含量对含有二十面体准晶相(I相)MgZn6xYx合金组织和性能的影响。结果表明,MgZn6xYx合金由α-Mg基体和分布在晶界周围的(α-Mg+I相)共晶组织组成。随着Y含量增加,基体晶粒尺寸减小,共晶组织尺寸增大,含量增加,由不连续分布转变为连续分布。在凝固过程中,二十面体准晶相通过共晶转变形成。Mg89.5Zn9.0Y1.5合金的抗拉强度和伸长率达到最大值,分别为179.2MPa和3.5%。MgZn6xYx合金的断口呈现准解理断裂特征。  相似文献   

9.
制备了Mg-2%Sc,Mg-5%Sc,Mg-10%Sc 3种二元合金,并通过光学显微镜、扫描电子显微镜、XRD以及室温拉伸等试验,研究了Sc元素的加入对纯镁显微组织和力学性能的影响。结果表明,Sc在三种合金中均以固溶形式存在,未有明显第二相的析出。随着Sc含量的升高,晶粒不断细化,合金的强度,硬度和塑性也随着Sc含量的增加而提高。其中,Mg-10%Sc表现出最优异的综合性能,屈服强度,抗拉强度,伸长率和硬度分别为101 MPa,143.3 MPa,10.27%,48.6 HV。细晶强化和固溶强化是Mg-Sc合金屈服强度提升的主要原因,且随着Sc含量的增加,固溶强化的贡献比例逐渐提升。断口形貌显示Sc的加入使得合金由脆性断裂向韧性断裂转变。  相似文献   

10.
探究了Cu含量与时效工艺对Al-Cu-Mg-Si系合金显微组织、力学性能以及耐腐蚀性能的影响。研究表明,随Cu含量的增加,铸态铝合金中Al2Cu相数量增加、尺寸不断增大,形貌由点状转为粗网状,铸态铝合金的强度也随之提升,耐蚀性能下降。在180 ℃×(4~28) h时效区间内,整体上合金硬度先上升后下降,0.5%Cu、1.5%Cu合金在8 h时达到峰值,2.5%Cu合金在12 h时达到峰值。530 ℃固溶+180 ℃×8 h时效后,铝合金中析出Al2Cu相,随着Cu含量的增加,Al2Cu相的含量增加,硬度显著上升,2.5%Cu含量的合金抗拉强度达到最大值325.0 MPa,屈服强度达到258.8 MPa,伸长率为4.5%,其强度与传统的电力金具用铸铁相当。  相似文献   

11.
以二硼化锆、正硅酸乙酯、蔗糖为原料,采用溶胶-凝胶法制备ZrB2-SiC前躯体,然后利用热压反应烧结方法,在1800℃,30MPa压力,流动的Ar气氛条件下,制备出高致密的ZrB2-SiC复合材料。其最大相对密度达到99.6%。ZrB2-SiC复合材料的抗弯强度和断裂韧性都随着SiC含量的增加先增加后降低。当SiC含量为20%时,ZrB2-SiC复合材料断裂韧性最大达到5.1MPa·m1/2。ZrB2-SiC复合材料的最大弯曲强度为272MPa,比报道出的值要低,这可能与过大的ZrB2晶粒有关。但当SiC含量为30%时,由于出现大量气孔而使材料不致密,从而导致其力学性能下降。  相似文献   

12.
In the present study,a series of AlCoCrxFeNi2.1 (x=0,0.25,0.5,0.75,1.0) eutectic high entropy alloys (EHEAs) have been designed and prepared.And the effect of Cr content on the microstructures and mechanical properties of the AlCoCrxFeNi2.1 alloys was systematically investigated.The results indicate that the AlCoCrxFeNi2.1 (x > 0) alloys exhibit almost complete lamellar eutectic microstructures with a mixture structure of FCC and B2 phases.And the AlCoFeNi2.1 alloy without Cr element exhibited a hypoeutectic microstructure with a primary B2 phase.In addition,the eutectic microstructures for AlCoCrxFeNi2.1 eutectic alloys do not change significantly.The room temperature compressive tests results show that with an increase in Cr content (from x =0 to x =1.0),the yield strength will first decrease,and thereafter increase.The trend is the opposite with the fracture strength and plastic strain.They show an increase trend at first,and then decrease.The AlCoCr0.5FeNi2.1 (Cr0.5) alloy shows the best comprehensive mechanical properties.The tensile yield strength,fracture strength,and elongation are 536.5 MPa,1062 MPa,and 13.8%,respectively.Furthermore,the Cr0.5 alloy also displays a high strength with a yield strength of 362 MPa at 700 ℃.In summary,by changing the Cr content,AlCoCrxFeNi2.1 eutectic high entropy alloys with excellent comprehensive mechanical properties were obtained and prepared.  相似文献   

13.
In order to improve mechanical properties and optimize composition of TiAl−Nb alloys, Ti46Al5Nb0.1B alloys with different contents of Fe (0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46Al5Nb0.1B0.3Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.  相似文献   

14.
In order to improve the mechanical properties of Ti Al alloys, especially the ductility at room temperature, and to study the effect of boron(B) on Ti Al alloys, different contents(0, 0.1, 0.3, 0.6, 0.9, 1.2, at.%) of B were added into Ti-44Al-6Nb alloys to prepare ingots. The surface quality, macrostructure, microstructure, compressive properties and fracture surface of the ingots were studied. The results show that B has little influence on the surface quality except that there are some dark spots on the surface when the content of B is 0.9%. B can refine the grains. The average grain size decrease from about 0.8 mm to 0.088 mm with increasing B content. Meanwhile, the grain morphology of these ingots changes from big equiaxed grains with lamellars to fine equiaxed grains. When the content of B is 1.2%, the primary Ti B2 phase forms in the liquid phase and increases the nucleation rate, leading to further refinement of the grains. The compressive testing results show that B can increase the strength and the ductility, the compressive strength and compressibility can reach 2,037.8 MPa and 26.7% from 1,156.2 MPa and 10.2% when the boron content is 0.6%, which is resulted from grain refining and grain boundary strengthening. It is found that the compressive strength and the compressibility are relatively stable when the B content is more than 0.3%.  相似文献   

15.
以Mg粉、Sn粉和Zn粉为初始原料,采用机械合金化和热压烧结的方法制备Mg-25Sn-x Zn合金。研究了Zn添加量对Mg-25Sn合金显微组织和性能的影响。结果表明:Mg-25Sn-x Zn体系的机械合金化过程中,Zn元素不参与合金化反应,但Zn的引入降低了Mg+Mg2Sn混合物的尺寸。除固溶外,烧结态Mg-25Sn-x Zn中Zn完全转变成MgZn2相。且随Zn含量的增加,MgZn2相的尺寸逐步增大,Mg晶界和Mg2Sn颗粒相周围是MgZn2相的择优分布位置。添加6%Zn(质量分数)的Mg-25Sn合金具有最优的力学性能,其显微维氏硬度为1.60GPa、屈服强度为388MPa、抗压强度为497 MPa、断裂应变7.5%。  相似文献   

16.
The mechanical properties of a new molybdenum-based alloy ZHMR are investigated. SEM, TEM, XRD, AES, EDS have been used to analyse the phase structure of ZHMR and its effects on mechanical properties have been discussed. The results indicate that the mechanical properties of PM-ZHMR3 and PM-ZHMR4 are superior to the properties of the other alloys. The improvements of PM-ZHMR4 over PM-ZHMR1 at room temperature are as follows: the tensile strength, 150 MPa; compressive strength, 400 MPa; Vickers hardness, 500 MPa. The improvement of tensile strength is 50 MPa at 1000°C. The optical micrographs reveal that yttria makes the grain size finer, and raises the recrystallisation temperature. XRD analysis manifests that the main phase that yttria forms in PM-ZHMR is Y2Hf2O7.  相似文献   

17.
采用凝胶注模工艺制备含8%和12%Co(质量分数,下同)的多孔Ti-Co合金,研究获得均匀悬浮稳定浆料的分散剂加入量。采用扫描电子显微镜、X射线衍射、压缩和三点弯曲试验分别对多孔Ti-Co合金的显微结构和力学性能进行了测试和分析。结果表明,加入1%分散剂可获得分散效果最佳的悬浮浆料,所制备多孔Ti-Co合金的孔隙率在50%左右,孔隙呈三维通孔结构。与多孔纯钛相比,添加Co元素明显提高了多孔Ti的力学性能,其中压缩强度在68~378MPa之间,抗弯曲强度在53.68~169.17MPa之间,弹性模量在7~21GPa之间。固相体积分数为33%,在1100℃下烧结的多孔Ti-8%Co合金由于与成人骨的力学相容性最好,适合作为医用植入材料。  相似文献   

18.
Xu  Qin  Wang  Qi  Chen  De-zhi  Fu  Yi-ang  Shi  Qing-sheng  Yin  Ya-jun  Zhang  Shu-yan 《中国铸造》2022,19(6):495-502

Refractory high-entropy alloys are considered as potential structural materials for elevated temperature applications. To obtain refractory high-entropy alloys with high strength, different amounts of Si were added into the NbMoTiVW refractory high-entropy alloys. The effects of Si on the phase constitution, microstructure characteristics and mechanical properties of NbMoTiVWSix alloys were investigated. Results show that when the addition of Si is 0, 0.025 and 0.05 (molar ratio), the alloys are consisted of primary BCC and secondary BCC in the intergranular area. When the addition of Si is increased to 0.075 and 0.1, eutectic structure including silicide phase and secondary BCC phase is formed. The primary BCC phase shows dendritic morphology, and is refined by adding Si. The volume fraction of intergranular area is increased from 12.22% to 18.13% when the addition of Si increases from 0 to 0.1. The ultimate compressive strength of the NbMoTiVW alloy is improved from 2,242 MPa to 2,532 MPa. Its yield strength is also improved by the addition of Si, and the yield strength of NbMoTiVWSi0.1 reaches maximum of 2,298 MPa. However, the fracture strain of the alloy is decreased from 15.31% to 12.02%. The fracture mechanism of the alloys is changed from mixed fracture of ductile and quasi-cleavage to cleavage fracture with increasing of Si. The strengthening of alloys is attributed to the refinement of primary BCC phase, volume fraction increment of secondary BCC phase, and formation of eutectic structure by addition of Si.

  相似文献   

19.
采用力学性能测试、金相观察(OM)、X射线衍射(XRD)、透射电子显微分析(TEM)研究了固溶-时效工艺对Al-6. 6Zn-1. 8Mg-0. 24Cu-0. 23Mn-0. 21Zr(wt%,7046A)合金挤压板带显微组织与力学性能的影响。结果表明:合金适宜的固溶-时效工艺为470℃×1 h固溶随后120℃×24 h人工时效。在此条件下,合金的抗拉强度、屈服强度和伸长率分别为570 MPa、532 MPa和10. 9%。T6态合金的物相组成为Al基固溶体、含Mn和Zr的初晶相以及3~5 nm的η’(MgZn2)析出相,与此同时,晶界上析出η(MgZn2)平衡相。合金的强化机制为固溶强化、亚结构强化和时效强化。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号