首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 597 毫秒
1.
为模拟高强钢转向节淬火后的微观组织和硬度分布,使用Jmatpro软件计算了42CrMo钢的热物性参数和等温转变曲线,获得了42CrMo钢的珠光体、贝氏体、马氏体转变动力学模型参数。基于Comsol软件建立了42CrMo钢淬火过程的传热、相变多场耦合有限元分析模型,模拟了转向节在PAG(聚烷撑乙二醇水溶液)中淬火冷却的过程,获得了温度、微观组织和硬度分布。分析了锻件杆部淬火后的硬度和显微组织,并与模拟结果进行对比。模拟结果表明:锻件杆部表面主要为82.1%的马氏体和17.9%的贝氏体,硬度为31.9 HRC,心部主要为15.9%的马氏体、72.5%的贝氏体、9.1%的铁素体和2.5%的珠光体,硬度为26.8 HRC。试验测得的锻件表面硬度最高为32.0 HRC,心部硬度最低为26.4 HRC,表面的组织为短板条状马氏体和部分粒状下贝氏体,心部为针状马氏体、羽毛状上贝氏体和铁素体,模拟结果与试验结果基本吻合,表明建立的多场耦合有限元分析模型能准确预测高强钢转向节锻件淬火微观组织和硬度分布。  相似文献   

2.
利用金相显微镜、洛氏硬度计和XRD衍射仪等仪器,观察了不同淬火温度下直径为85 mm的GCr15SiMn钢球的组织特征和硬度变化规律。结果表明:经825℃淬火、回火后,试样心部组织为板条马氏体+碳化物+块状屈氏体+针状屈氏体,距表面距离大于22.9 mm时,硬度低于58 HRC;经830~840℃淬火、回火后,试样心部组织为板条马氏体+碳化物+针状屈氏体,心部硬度大于59 HRC。淬火温度由825℃升高至840℃时,边部残留奥氏体由11.42%增加至16.06%,心部残留奥氏体由13.49%增加至21.76%。淬火温度在830~835℃范围内,试样硬度、组织和残留奥氏体最稳定。  相似文献   

3.
利用热膨胀仪对塑料模具钢SDPM在不同冷速下的过冷奥氏体连续冷却转变行为进行了研究,并探讨了不同淬火方式获得的两种组织经不同温度回火后的组织和硬度的变化规律。结果表明:SDPM钢过冷奥氏体连续冷却过程只包括贝氏体和马氏体转变,而无珠光体或铁素体转变;当冷速在0.02~0.5℃/s时,转变产物以贝氏体和M/A岛混合组织为主;当冷速大于0.5℃/s时,转变产物以马氏体转变为主。SDPM钢的回火温度从510℃升高到570℃,马氏体淬火组织的硬度从40.3 HRC下降到37.7 HRC,等温贝氏体淬火组织硬度从39.5 HRC下降到38.2 HRC;继续升高回火温度到610℃时,马氏体淬火组织硬度下降到32.8 HRC,等温贝氏体组织硬度下降到33.6 HRC。获得最佳硬度均匀性的回火温度为550℃。  相似文献   

4.
利用JMatPro软件对渗碳后的18CrNiMo7-6钢制齿轮表面Ms点进行模拟计算,基于模拟结果对齿轮进行了180℃等温盐浴淬火处理,研究了等温盐浴淬火处理齿轮的组织和性能,并和普通油浴淬火处理进行了横向对比。结果表明:渗碳齿轮经180℃等温淬火处理,表层获得下贝氏体,少量马氏体以及残留奥氏体的复相组织,并由表及里逐渐过渡至心部的马氏体组织;相比于普通油浴淬火,盐浴淬火所形成的心部存在少量的贝氏体组织能够降低齿轮的裂纹敏感性,提高综合力学性能;等温盐浴淬火齿轮的表面生成了约20%的残留奥氏体,导致齿轮表面硬度较低,但经深冷处理,能够有效控制等温盐浴淬火后齿轮表面的残留奥氏体含量,并且显著提高表面硬度;通过试验齿轮的单齿弯曲疲劳检测,180℃等温盐浴淬火齿轮服役性能显著高于普通油浴淬火齿轮。  相似文献   

5.
评估了水、10%的水溶性聚合物溶液以及常规淬火油对碳氮共渗件的淬火性能,并比较了经各种介质冷却后的淬火态和调质态的显微组织.淬硬层中的典型组织为气体碳氮共渗产物(碳氮化合物)-马氏体-残留奥氏体,心部组织为马氏体-残留奥氏体或贝氏体-残留奥氏体.通过研究残留奥氏体和氮碳化合物的含量对硬度、耐磨性和冲击强度的影响,表明使用10%的水性聚(亚烷基)二醇淬火液淬火时的效果最佳.  相似文献   

6.
采用计算机模拟40Cr钢冷却过程中的CCT曲线和TTT曲线并预测其组织分布状态,最后采用硬度测试、OM和SEM等对其组织进行分析并对计算机模拟结果进行验证。结果表明,当电机转速为350 r/min时,试验钢表层组织由奥氏体向贝氏体转变,心部组织由奥氏体向马氏体和贝氏体转变;当转速为550 r/min时,试件表层已经全部转变为马氏体;随着离表层距离的增加,试验钢硬度降低,且硬度分布曲线与计算机预测结果一致。  相似文献   

7.
以20CrMnTi齿轮钢为模型,设计制备了不同碳含量及合金成分的试样,以10%NaCl水溶液与液氮作为淬火冷却介质。分析探讨了试样淬火后微观组织形貌与宏观硬度的对应关系,以及不同冷却速度对其组织转变的影响。结果表明:采用10%NaCl水溶液作为淬火介质时,低中碳试样的组织为典型板条马氏体,高碳试样微观组织中保留了大量残留奥氏体,硬度相对较低;液氮淬火过程中,高温区试样表面形成了氮气膜,传热缓慢,导致低碳试样淬火组织中出现少量铁素体组织,致使其硬度低于盐水淬火的全马氏体组织;然而,对于高碳及高Ni合金样品,高温区氮气膜的冷速已达到淬火临界冷速,且低温区的大过冷度进一步促进部分残留奥氏体向马氏体转变,宏观硬度表现为升高;低温区的液氮深冷作用导致细小残留奥氏体向马氏体转变,但粗大残留奥氏体转变较为困难。  相似文献   

8.
采用高温淬火相变仪、Gleeble 3500热模拟试验机和SEM等手段,研究了试验用高强度舰船用钢连续冷却过程中的组织转变规律。结果表明,试验钢的静态CCT曲线和动态CCT曲线均由铁素体加贝氏体、贝氏体、贝氏体+马氏体和马氏体四个区域组成。静态热模拟组织中冷却速度达到5℃/s时奥氏体才全部转变成贝氏体,而动态热模拟组织中冷却速度为3℃/s时奥氏体就已全部转变成贝氏体组织,且贝氏体组织相对细小。当冷却速度达到20℃/s时,静态和动态热模拟组织中都是完全马氏体组织,形貌均呈板条状,动态热模拟试样的马氏体板条更细小、密集。无论是静态热模拟组织还是动态热模拟组织,硬度都随冷却速度的提高,逐渐升高,但动态热模拟试样的硬度比静态高3~6 HRC。  相似文献   

9.
针对新设计的一种高碳低合金耐磨钢65MnCr,利用末端淬火实验测得了淬透性曲线,研究了该钢的淬透性;分析了该钢Φ130 mm柱状工件淬火后从表层到心部的相变组织,并测得了从表层到心部的硬度分布。结果表明:该钢的淬透层的深度为48 mm,相比65Mn钢,淬透性得到了很大提高。Φ130 mm柱状工件的65MnCr钢淬火后半马氏体深度距表面约为40 mm,淬硬层硬度达到60~61 HRC。在30~40 mm深度,主要为马氏体和索氏体的混合组织,硬度下降到54 HRC左右。心部组织为索氏体+少量贝氏体+少量的马氏体,硬度大约为48 HRC。  相似文献   

10.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和硬度计等对QTNi4MoV球墨铸铁在淬火和回火过程中的组织及硬度变化规律进行了研究。结果表明:经1323 K保温4 h的石墨化退火处理后,QTNi4MoV球墨铸铁的组织由石墨球+残留奥氏体+针状贝氏体组成,硬度约为40 HRC;再经1223 K保温1 h油淬后,QTNi4MoV球墨铸铁的组织由石墨球、马氏体和残留奥氏体组成,硬度为48.5 HRC;淬火后QTNi4MoV球墨铸铁的组织具有良好的回火抗力,回火温度达到773 K时,其淬火马氏体才开始分解;经773 K保温3 h的一次和二次回火后,QTNi4MoV球墨铸铁的组织为石墨球、回火马氏体和少量残留奥氏体,硬度值分别为47.5和46 HRC,抗拉强度高于900 MPa,满足铝合金压铸模具服役时对其制造材料在力学性能方面的要求。  相似文献   

11.
研究了Mn、Cr含量对SWRCH45K钢组织和性能的影响。试验钢的淬火温度为860 ℃,分别进行油冷和水冷,同时利用模拟软件对淬火后硬度进行模拟计算。试验结果表明,Mn、Cr含量提高导致试验钢的抗拉强度有所增加;油冷试验钢组织均为铁素体+屈氏体,心部组织中铁素体比例略高;水冷试验钢近表面处组织为马氏体+少量的屈氏体,心部组织中屈氏体随Mn、Cr含量增加而减少。油冷试验钢硬度沿直径方向上的变化较小,0.70%Mn-0.04%Cr试验钢硬度在22~24 HRC之间,且明显低于其它试验钢;水冷试验钢近表面处硬度差异较小,心部硬度下降明显。试验结果与模拟结果对比表明,试验钢近表面处硬度值与模拟结果具有较好相符性。  相似文献   

12.
利用光学显微镜、洛氏硬度计等研究了不同淬火工艺对Cr26高铬耐磨铸铁组织与硬度的影响。结果表明:铸态Cr26高铬铸铁组织主要由初生奥氏体和碳化物组成。经980~1060 ℃不同温度淬火、空冷后,高铬铸铁组织中有大量二次碳化物析出。随着淬火温度的升高,析出的二次碳化物先增加后减少,试样硬度先升高后降低。1020 ℃淬火试样硬度达到峰值,为65.7 HRC。1020 ℃淬火高铬铸铁,经空淬、油淬和水淬不同方式冷却,随着冷却速度的增大,高铬铸铁组织中碳化物颗粒、碳化物比例逐渐增大,硬度逐渐增大,其中水淬高铬铸铁试样硬度最大,达到68.2 HRC。  相似文献   

13.
H13E钢是通过调整合金元素对H13钢进行了一定的改性,研究了淬火工艺对H13E钢显微组织及力学性能的影响。结果表明:随着淬火温度的升高,奥氏体晶粒尺寸单调增加,从1020 ℃升高至1080 ℃时,平均奥氏体晶粒尺寸增长了约40 μm;硬度在1060 ℃达到最大值,为61.6 HRC,相较于传统H13钢硬度高3~5 HRC,同时冲击吸收能量可达16 J以上。当保温时间在20~50 min时,奥氏体晶粒增长速率较缓慢,平均奥氏体晶粒尺寸仅增长7 μm左右,同时硬度仅下降0.2 HRC左右。相同条件下油冷后H13E钢马氏体更细小,力学性能优于空冷后的H13E钢。考虑综合力学性能,H13E钢较佳淬火工艺为:1060 ℃保温20~30 min,油冷。  相似文献   

14.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

15.
通过扫描电镜、冲击试验机和动载冲击磨料磨损试验机等对低合金耐磨钢显微组织、力学性能和耐磨性能进行了分析。结果表明:铸态组织由珠光体和碳化物组成,铸态合金的宏观硬度为41.3 HRC,冲击吸收能量为6.1 J,磨损量为1.4378 g。经水玻璃(Na2SiO3)和PAG淬火后,显微组织均转变为回火板条马氏体和碳化物,宏观硬度分别为49.0 HRC和51.1 HRC,冲击吸收能量分别为7.3 J和9.4 J,磨损量分别为0.9378 g和0.8350 g。相比铸态合金,PAG淬火后合金的宏观硬度、冲击性能和耐磨性分别提高了23.7%、54.1%和1.7倍。相比水玻璃淬火,PAG淬火后合金钢的宏观硬度、冲击性能和耐磨性分别提高了4.3%、28.8%和1.1 倍。  相似文献   

16.
对不同直径的35CrMnSi低合金钢棒进行900 ℃油冷淬火+230 ℃回火处理,通过分析钢棒直径与横截面硬度、横截面中心显微组织的关系,探索了35CrMnSi低合金钢油冷淬火临界直径。结果表明,由于贝氏体的存在使淬火马氏体量与硬度的相关性不再符合SAE J406标准提供的对应关系,其中Ø60 mm钢棒马氏体含量仅约40%,但轴线中心硬度接近于按SAE J406标准90%马氏体对应的硬度,轴线中心强度和韧性考核证明符合超高强度钢强韧性要求,可以判定35CrMnSi低合金高强度钢淬火临界直径不小于Ø60 mm;Ø90 mm钢棒轴线中心粒状贝氏体和上贝氏体对硬度影响有限,450 HV10(46 HRC)的硬度远高于SAE J406标准50%马氏体对应的硬度,同样证明若用SAE J406标准淬火马氏体量预测35CrMnSi钢的淬火临界直径远低于实际值。  相似文献   

17.
探讨了双液淬火冷却工艺对9Cr2Mo钢辊皮表面组织、硬度的影响,得到了最佳双液淬火冷却工艺。结果表明,单液水冷淬火后表面组织为粗大的回火马氏体,水油双液淬火后回火马氏体晶粒明显细化,并且形成了少量的贝氏体和残留奥氏体。双液淬火处理后,辊皮外表面硬度分布为中部硬度高,边部硬度低,使辊皮的使用寿命得到了明显提高。ø750 mm的9Cr2Mo钢辊皮水油双液淬火最佳冷却工艺为入水前炉外预冷时间300 s,水冷-油冷之间预冷时间控制在60~180 s。  相似文献   

18.
以3Cr2NiMo模具钢锻造模块为研究目标,通过JMatPro软件计算获得其热物性参数,利用Deform-3D软件对其锻后热处理进行了数值模拟研究,最后进行了试验验证。结果表明:淬火过程中模块外表面的冷速大于心部;从心部到表面,马氏体转变出现不等时现象,淬火后从表面到心部的组织分布依次为马氏体、贝氏体和铁素体。等效应力沿厚度方向分布较均匀,但在棱边处出现应力集中现象;硬度值的分布与马氏体的分布呈正相关,表面的平均硬度值为34.86 HRC。试验验证测得的马氏体层平均深度为45 mm,表面平均硬度为36.23 HRC,模拟结果与试验结果的误差在10%以内,具有较好的吻合度。  相似文献   

19.
对42CrMo中碳轴承钢进行不同温度中频感应加热及淬火介质的表面淬火处理,并使用洛氏硬度计、光学显微镜、扫描电镜及透射电镜对淬火试样不同区域组织及硬度进行测试分析。结果表明,经表面淬火处理后,按硬度由大到小试样可分为淬硬区、过渡区及基体3个区域,随着表面淬火加热温度的升高,表面淬硬层的深度增加,并且相对于水淬,油淬的淬硬层深度显著减少。组织分析表明,水淬淬硬区组织均为马氏体,而油淬工艺由于冷速较慢,淬硬层组织为马氏体+铁素体组织,不同表面淬火工艺条件下过渡区组织均为马氏体+回火索氏体,基体为原始调质态的回火索氏体。淬硬区、过渡区及基体的组织差异导致不同区域的硬度差异。实际应用中应根据所需淬硬层深度选择合适的水淬加热温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号