首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
通过对410不锈钢进行热压缩试验,分析了不同变形温度及变形速率对应力应变曲线的影响,并以此为基础构建了本构方程及热加工图.发现相同应变速率的真应力应变曲线,温度越大,真应力越小.不同应变速率的流变曲线,低应变速率下,应力达到峰值后,将出现下降趋势;而高应变速率下,应力将一直升高,直到达到最大应变量时达到最高.分析热加工...  相似文献   

2.
用Gleeble 3180热模拟试验机对022Cr钢的热变形行为进行研究,揭示了变形抗力与变形程度、变形温度和应变速率的关系。在950~1200 ℃温度范围和应变速率为0.001~5 s-1下进行热压缩,并利用动态材料模型(DMM)建立了022Cr钢热变形的工艺图。结果表明,随着变形温度的升高和应变速率的降低,022Cr钢的流动应力降低。根据流动应力曲线数据计算其变形激活能为381.615 kJ/mol。当应变不小于0.5时,022Cr钢热加工的最佳变形条件有两个区域,第一个区域在温度范围1100~1200 ℃,应变速率范围0.001~0.01 s-1内,第二个区域在温度范围1130~1180 ℃,应变速率范围1~5 s-1内,其功耗效率都能达到0.4以上。  相似文献   

3.
使用Gleeble-1500D热模拟试验机对9Ni钢进行了热压缩变形实验,研究其在应变量为0.8、 变形温度为800~1150℃、 应变速率为0.1~5 s-1下的热变形行为,并对不同热变形条件下实验样品的微观组织进行了系统研究.研究发现,针对不同的变形条件,真应力-真应变曲线中的流变应力随着变形温度的升高以及应变速率...  相似文献   

4.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。  相似文献   

5.
利用Thermecmastor-Z热模拟试验机对COST FB2钢进行了等温压缩试验,研究了其在不同热变形工艺参数下的热变形行为、显微组织演变规律以及最优的热加工工艺窗口。结果表明,热变形过程中,流变应力随着变形温度的升高及应变速率的降低而降低,在不同的应变速率与变形温度下,流变应力曲线呈现出动态再结晶、动态回复与加工硬化特征。基于Arrhenius方程和Zener-Hollomon函数,求得COST FB2钢的热变形激活能Q为449.56 kJ·mol-1。建立了本构模型,该模型预测值与试验值吻合度较高。基于Prasad失稳判据建立了COST FB2钢热加工图,结合热变形后的显微组织特征,发现失稳区主要集中分布于变形温度900~950℃、应变速率0.04~0.5 s-1范围内,其显微组织为沿变形方向拉长的带状组织,并存在局部流动性,对应的功率耗散值η较低;安全区显微组织主要特征是部分动态再结晶组织,功率耗散值η较高。确定了其0.8应变量下合理的热加工工艺窗口为:变形温度975~1050℃、应变速率0.01~0.14 s-1  相似文献   

6.
基于Gleeble-3500热模拟压缩实验,对热变形行为及热加工图进行分析.结果 表明:34CrNiMo6钢的热变形激活能为365.653kJ/mol;在变形温度1030~1120℃、应变速率0.005~0.03s-1及变形温度1050~1090℃、应变速率0.1~0.5s-1区域内发生的动态再结晶较为充分,是最佳的加...  相似文献   

7.
设计制备了4种不同Mg/Si比并添加稀土元素Ce、Er、Zr和B的新型Al-Mg-Si合金,并研究了其显微组织与导电率及抗拉强度。然后以一种优化成分的Al-Mg-Si-RE合金为研究对象,通过 Gleeble-3500热模拟机进行热压缩试验,研究了变形温度为300~450 ℃,应变速率为0.001~1 s-1时该新型合金的热变形行为。通过试验数据构建该合金的本构方程和热加工图,通过光学显微镜研究显微组织的演变。结果表明,当Mg/Si比为1.4时,该合金具有优异的性能,该合金流变应力随着变形温度的升高而降低,随应变速率的增大而增大。计算得到该合金的热变形激活能为176.188 kJ/mol,所得本构方程对该合金的流变行为具有指导作用。由热加工图可知,该合金适宜在变形温度为300~320 ℃,应变速率为0.001~0.015 s-1或变形温度为430~450 ℃,应变速率为0.001 s-1或1 s-1附近的条件下进行热加工。  相似文献   

8.
为研究低碳马氏体不锈钢的热变形行为,利用Gleeble-3800热模拟试验机对该材料进行不同温度的压缩变形试验,利用流变应力曲线构建了基于Arrhenius双曲正弦模型的本构方程,并建立试验材料的热加工图,最后对比分析试验材料在不同变形条件下的显微组织。结果表明,材料在高变形温度与低应变速率下变形时主要发生动态再结晶现象,在低变形温度与高应变速率下变形时主要发生加工硬化现象,流变应力的理论值与实测值的线性相关系数为0.995 5,验证了本构方程的准确性;结合热加工图分析和显微组织观察,得出该材料的失稳工艺窗口区域为变形温度1 020~1 120℃、应变速率0.01~1 s-1;材料的最佳工艺窗口区域为变形温度900~1 150℃、应变速率0.003~0.01 s-1。变形温度的提高有利于将粗大变形组织逐渐转变成细小的等轴组织,应变速率的降低同样有利于发生动态再结晶,但过低则会延长变形时间,导致再结晶晶粒逐渐长大与粗化。  相似文献   

9.
利用Gleeble3180热模拟试验机,在变形温度为950~1100 ℃,应变速率为0.001~1 s-1,真应变为0.7的条件下,对X12CrMoWVNbN钢进行了高温单向热压缩试验。通过不同条件下的高温流变曲线分析了变形温度和应变速率对试验钢热变形力学行为的影响。以Arrhenius方程为本构模型,建立了能够预测该钢流动应力的本构方程。基于动态材料模型和试验参数、结果,绘制了该钢不同应变量下的热加工图并结合图进行了组织分析。结果表明,流变峰值应力和稳态应力随温度降低或应变速率升高而升高;功率耗散系数随应变速率降低和变形温度的升高而增大;最优热加工区域功率耗散系数η的值都在0.4以上,且这些区域的变形组织晶粒均匀细小;0.3、0.4、0.5和0.6应变下的最优热加工区域都处于变形温度1050~1100 ℃、应变速率0.001~0.003 s-1的范围。  相似文献   

10.
11.
调整处理对AM355不锈钢微观组织与力学性能的影响   总被引:2,自引:1,他引:1  
利用金相显微镜(OM)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)与性能测试等试验手段,研究了调整处理对AM355高强不锈钢微观组织与力学性能的影响。结果表明,随着调整处理的温度升高,一方面钢中残留奥氏体含量逐渐升高,从而引起钢的屈服强度逐渐降低;另一方面,钢中的第二相粒子随着调整温度的升高产生了回溶现象,其固溶强化效果导致钢的抗拉强度逐渐提高,两方面的综合效果使得AM355钢的屈强比随着调整温度的升高而逐渐降低。此外,在750~1000 ℃温度范围进行调整处理后,钢中出现了M23C6、(Cr, Mo)2N、α-(Cr, Fe)析出相,其中(Cr, Mo)2N颗粒尺寸最小而α-(Cr, Fe)颗粒尺寸最大。  相似文献   

12.
采用Thermecmastor-Z热模拟试验机对0Cr24Si Al铁素体不锈钢进行了不同温度(700~1100℃)、特定变形速率2.0 s-1的拉伸和不同温度(900~1150℃)、不同变形速率(0.01~2.5 s-1)的压缩试验,研究了不同温度和不同变形条件下0Cr24Si Al的塑性与变形抗力的关系,建立了变形抗力数学模型热塑性本构方程ε·=3.634×1017[sinh(0.018σ)]3.71exp(-387 847/RT)。结果表明,0Cr24Si Al铁素体不锈钢的热变形激活能为387.847 k J/mol,热变形塑性较好的温度范围是950~1150℃。  相似文献   

13.
采用Gleeble-3500热模拟试验机研究了微碳钢在700~1100℃、0.01~10 s-1条件下的热变形行为。确定了其在铁素体区和奥氏体区的热变形方程。建立了微碳钢在不同应变量下的热加工图(Processing Map)。结果表明,在铁素体区和奥氏体区,试验钢的峰值应力大小基本相当;试验钢在铁素体区和奥氏体区的热变形激活能分别为302 kJ/mol和353 kJ/mol;不同真应变下的热加工图相似,当变形温度为875℃,应变速率为0.01 s-1时,能量消耗效率达到最大值为0.5。  相似文献   

14.
Cr微合金化低碳钢热变形行为   总被引:1,自引:1,他引:0  
采用Gleeble-3500热模拟机对一种含微量合金元素Cr、Mn、Ti的低碳钢在变形温度700~1050℃.应变速率0.01~0.1s~(-1)条件下的热变形行为进行研究.结果表明:单相奥氏体区和铁索体区,峰值应力随变形温度的降低而升高,在两相区,峰值应力随着变形温度的降低而降低;在775~850℃与950~1050℃的温度区间,峰值应力的大小基本相当.建立了热加工图,并通过组织观察对其热加工图进行了解释.根据流变应力曲线,确定了试验低碳钢铁素体区的热变形激活能和热变形方程.  相似文献   

15.
采用Gleeble-3800热模拟试验机,通过热压缩试验研究了变形温度900~1200℃、应变速率0.001~10.0 s-1时,Maraging250钢的热变形行为,综合考虑摩擦效应和变形热效应,对流变应力曲线进行摩擦修正和温度修正,建立双修正条件下的Maraging250钢本构方程和热加工图,并针对真应变为1.2的...  相似文献   

16.
为优化后续轧制工艺,利用Gleeble-3800热力模拟机,对轧制态254SMo超级奥氏体不锈钢进行等温恒应变速率压缩试验,研究了254SMo超级奥氏体不锈钢在变形温度为900~1100℃,应变速率为0.005~5 s-1的热变形行为及微观组织演变。结果表明,随着变形温度升高及应变速率降低,峰值应力减小,且流变曲线的单峰特征变得明显,说明高温低应变速率下254SMo容易发生动态再结晶;三种形式的Arrhenius本构方程预测精度对比显示,指数形式的精度最高,相关系数达97.496%,变形激活能为546 kJ/mol。  相似文献   

17.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

18.
采用Gleeble-3800热模拟试验机研究了热变形温度为950~1200 ℃、应变速率为 0.01~10 s-1条件下2507超级双相不锈钢的热压缩变形行为,并借助光学显微镜观察了不同变形过程中的微观组织演化。基于试验数据分析,建立2507超级双相不锈钢的流变应力本构关系及热加工图。结果表明:流变应力随着变形温度的升高和应变速率的降低而逐渐降低,在高应变速率下,流变曲线出现“类屈服平台”。试验钢的热变形激活能为414.57 kJ·mol-1,应力指数为4.18,峰值应力本构方程为ε·=3.69×1015[sinh(0.0101σ)]4.18exp-414.57RT,根据微观组织分析及热加工图确定出试验钢的最佳热加工区域为热压缩温度1060~1120 ℃,应变速率0.01~0.1 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号