首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
实验室成功叠轧制备Ni/Al复合材料,研究了叠轧道次和热处理对复合材料硬度的影响规律。结果表明:随着叠轧道次的增加,Ni、Al组元及复合材料硬度均有增大。当叠轧道次n≤3时,Ni组元的层状结构使得Al的变形受到材料整体性的抑制作用,导致了复合材料整体硬度出现反常增大现象;当叠轧道次n>3时,Ni颗粒在Al组元中的镶嵌效应使得Al组元变形所受的抑制作用减弱,从而使得复合材料整体硬度随叠轧道次增加速度减慢。建立了叠轧道次n与Ni、Al组元及复合材料整体硬度的关系方程。经250 ℃×50 min热处理,组元间附加应力的减小和再结晶作用导致Ni、Al组元及复合材料整体硬度减小,且由于变形的不均匀使得Ni层颗粒再结晶程度不均匀,导致Ni组元硬度波动变大。  相似文献   

2.
室温下采用累积叠轧(ARB)11道次制备了Ni/Al多层复合材料。对不同叠轧道次后复合材料的纵切面的显微组织进行了观察分析。结果表明,单道次叠轧后Ni层即剪切断裂成针叶状颗粒碎片。随着叠轧道次增加,Ni层逐渐减薄并断裂成越来越小的颗粒碎片。通过对Ni颗粒组成的Ni层平均厚度(THKA)进行粒度分析,建立了叠轧道次n与THKA之间的关系模型。  相似文献   

3.
采用叠轧焊接方法制备Al/IF钢多层复合材料,随后进行300~450 ℃退火处理,并对叠轧态和退火态的微观结构及力学性能进行分析。结果表明:叠轧态Al/IF钢多层复合材料的抗拉强度介于纯Al和IF钢之间,断裂总延伸率相对较低,退火后Al和IF钢层的硬变均高于其原材料;随着退火温度的增加,抗拉强度逐渐降低,断裂总延伸率呈先增加后减小的趋势,在350 ℃退火时,复合材料的综合力学性能最优。退火温度对Al/IF钢多层复合材料力学性能的影响主要体现在对Al层的影响上。  相似文献   

4.
针对累积叠轧5道次制备的Ti/Ni多层结构复合材料试样进行热处理,采用光学显微镜和扫描电镜分析方法,对复合材料的显微组织、界面结构和扩散反应层厚度等进行观察分析,结合动力学理论研究了Ti/Ni界面的扩散行为。结果表明:试样经过累积叠轧5道次轧制后,Ti/Ni界面未发生扩散;在(550~750℃)/(0.5~8 h)热处理后,Ti/Ni界面发生扩散,扩散层厚度与保温时间呈幂函数关系,与加热温度呈指数关系;随着热处理温度的升高,Ti-Ni扩散层的生长方式由650℃以下的体扩散控制逐渐转变为晶界扩散控制。通过计算和验证得到采用累积叠轧5道次制备的Ti/Ni多层复合材料的Ti/Ni界面固相反应层生长动力学方程为:y=1.7043×10~4 exp(-78202/RT)t~(1.2009-0.0008T)。  相似文献   

5.
以工业纯Ti、纯Ni板材为初始材料,采用累积叠轧法(ARB)制备出Ti/Ni多层复合板材料。利用扫描电镜、透射电镜、万能材料试验机、显微硬度仪对复合材料的组织、界面结构和力学性能进行观察和测试分析。结果表明:随着轧制道次的增加,复合材料中Ti层和Ni层显微组织细化明显,均匀程度提高,ARB 5道次后,Ti、Ni层的平均晶粒尺寸分别为200和300 nm;复合材料的抗拉强度、显微硬度显著提高;ARB 5道次后抗拉强度达到810 MPa,延伸率为24.4%,Ti、Ni层平均HV显微硬度分别为2.33和2.29 GPa。在ARB 0~5道次轧制变形过程中,界面处无明显的原子扩散现象发生。  相似文献   

6.
《稀有金属材料与工程》2016,45(9):2352-2358
本文以工业纯Ti、纯Ni板材为初始材料,采用累积叠轧法(ARB)制备出Ti/Ni多层复合板材料。利用扫描电镜、透射电镜、万能试验机、显微硬度仪对复合材料的组织、界面结构和力学性能进行观察和测试分析。结果表明:随着轧制道次的增加,复合材料中Ti层和Ni层显微组织细化明显,均匀程度提高,ARB5道次后,Ti、Ni层的平均晶粒尺寸分别为200 nm和300 nm;复合材料的抗拉强度、显微硬度和界面结合强度显著提高,ARB5道次后抗拉强度达到810 MPa,延伸率为24.4%,Ti、Ni层平均显微硬度分别为233 HV和229 HV。在ARB1-5道次轧制变形过程中,界面处无明显的原子扩散现象发生。  相似文献   

7.
本文针对累积叠轧5道次制备的Ti/Ni多层结构复合材料试样进行热处理,采用光学显微镜和扫描电镜分析方法,对复合材料的显微组织、界面结构和扩散反应层厚度等进行观察分析,结合动力学理论研究了Ti/Ni界面的扩散行为。研究结果表明:试样经过累积叠轧5道次轧制后,Ti/Ni界面未发生扩散;在(550 ℃-750 ℃)×(0.5 h-8 h)热处理后,Ti/Ni界面发生扩散,扩散层厚度与保温时间呈幂函数关系,与加热温度呈指数关系;随着热处理温度的升高,Ti-Ni扩散层的生长方式由650 ℃以下的体扩散控制逐渐转变为晶界扩散控制。通过计算和验证得到采用累积叠轧5道次制备的Ti/Ni多层复合材料的Ti/Ni界面固相反应层生长动力学方程为:y=1.7043*104*exp(-78202/RT) *t1.2009-0.0008T。  相似文献   

8.
采用累积叠轧焊+中间退火法复合轧制1060Al/Fe基非晶多层铝合金复合板材。利用光学显微镜、扫描电镜、X-衍射分析仪以及拉伸试验机分析Al基复合材料的微观组织结构变化、断口形貌、物相组成以及力学性能。结果表明:Fe基非晶复合材料的增强体在300 ℃中间退火过程中发生部分晶化,在累积变形轧制过程中发生破碎,并随着变形道次的增加,破碎程度随之增大;复合板前6道次的累积轧制变形出现了明显的加工软化现象,并且随着变形道次的增加,其加工软化的效果愈明显;随着累积轧制变形道次增加,Al基复合材料的力学性能发生了明显的变化,第2道次轧制变形后屈服强度与抗拉强度达到了最大值为140 MPa和156 MPa,伸长率为5.53%,达到最佳综合性能。  相似文献   

9.
累积叠轧变形金属的界面焊合质量是影响叠轧工艺及材料成形性能的关键因素。利用累积叠轧技术研究了道次变形量对界面焊合强度的影响,比较了单道次下焊合坯料不同变形区域的组织特征,分析了界面焊合特征及焊合条件。结果表明:经300℃加热、50%压下量后的叠轧组织虽明显细化,但沿轧制方向分布极不均匀。道次变形量是影响界面焊合质量的一个基本因素,界面焊合质量随着道次变形量的增大而提高,当道次变形程度大于临界变形程度(50%)时,可以促进界面焊合,保证界面焊合质量:界面焊合较好区域已被再结晶覆盖,无明显界面层存在;抗拉强度和结合强度也随变形量增加而增大。  相似文献   

10.
通过累积叠轧工艺制备出Al/ZK60/Al复合板,采用SEM、TEM、万能拉伸试验机、动态热机械分析仪研究了变形道次对ZK60/Al复合板材的微观组织及性能的影响。结果表明,不同变形道次复合板界面结合良好,无明显颈缩,断裂现象。随道次增加,ZK60/Al复合板的抗拉强度呈现先上升后下降的趋势,ARB-1道次时复合板的抗拉强度为216 MPa,伸长率达到最大值为2.6%。ZK60/Al多层复合板的温度-阻尼谱存在两个明显的内耗峰,即150℃左右的P_1弛豫型阻尼峰,300℃左右的P_2再结晶阻尼峰;ZK60/Al多层复合板材的应变-阻尼谱呈现典型的位错阻尼机理,应变阻尼可以用G-L理论分析。  相似文献   

11.
采用累积叠轧法(ARB)对Mg/Al多层板材进行高周期ARB变形,利用光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)研究了Mg/Al多层板材在ARB变形过程中的微观组织,并在拉伸试验机上测试板材的室温抗拉强度并通过扫描电子显微镜(SEM)观察拉伸试验后的断口形貌。结果表明,随着叠轧周期数的增加,Mg/Al多层复合材料层界面处生成并长大的金属间化合物明显细化,该化合物会逐渐呈连续多层状分布,同时也提高了层界面的结合程度。不过,Mg/Al多层复合材料的抗拉强度在叠轧过程中却呈现出不规则的变化趋势。  相似文献   

12.
以反应合成所制备的AgSnO_2复合材料为研究对象,采用XRD、光学显微镜与物理、力学性能测试分析手段,分析了反应合成AgSnO_2复合材料的物相,温度为973 K条件下AgSnO_2复合材料经过4道次累积叠轧后的显微组织及密度、硬度、电阻率等性能。结果表明:累积叠轧工艺对反应合成AgSnO_2复合材料显微组织与物理性能有显著影响;累积叠轧道次影响着增强相SnO_2在银基体中的分布状态,叠轧不仅能够促使SnO_2在银基体中弥散化分布,也会由于叠层导致SnO_2的二次团聚;其密度、硬度均随着累积叠轧次数增多而升高,电阻率在第1次叠轧时有所降低,随后随着累积叠次数增多而升高。  相似文献   

13.
累积叠轧1060工业纯铝的微观组织和性能   总被引:1,自引:0,他引:1  
采用累积叠轧方法对1060工业纯铝进行变形,分析了变形前后其微观组织和力学性能。试验结果表明,累积叠轧4道次后工业纯铝的抗拉强度提高了60N/mm^2,硬度提高了一倍。在第一道次之后伸长率下降较大,从45%下降到12%,但在以后道次中保持稳定。随着变形道次的增加,纤维组织越来越细。当累计变形量大于75%时其复合界面焊合较好,断裂裂纹很容易在复合界面形核,并沿着复合界面扩展延伸。  相似文献   

14.
以商业纯Mg和AA1050 Al板材为初始材料,采用累积叠轧技术在室温下进行不同轧制道次变形制备了Mg/Al多层复合板材料,并对3 cyc轧制的Mg/Al多层复合板材料在200℃分别进行不同时间退火处理.利用OM,SEM和中子衍射技术对微观组织和宏观织构进行了研究.结果表明,复合板材中Mg和Al层组织均随着循环次数的提高而细化;在200℃时随着退火时间的增加,晶粒逐渐均匀但没有明显长大.累积叠轧过程中Mg层主要呈现出典型的轧制织构类型,Al层则表现出以轧制织构组分为主,同时伴有剪切织构组分的混合织构类型.对于3 cyc轧制的Mg/Al多层复合板材,在200℃经不同时间退火后,Mg层依然为轧制织构类型,Al层为轧制织构与剪切织构组分混合.随着累积叠轧循环道次的增加,屈服强度和抗拉强度都逐渐上升.  相似文献   

15.
在室温条件下对退火态的纯Ti、Ni进行了三道次的累积叠轧(ARB)试验,采用扫描电镜、光学显微镜和拉伸试验机研究了不同道次后材料的界面、微观组织和力学性能。结果表明:材料经3道次轧制后,界面平直且结合良好,镍和钛组织均被拉成纤维状;该复合材料的抗拉强度和显微硬度也显著提高,最高达到684 MPa和210 HV;该材料的拉伸断裂方式为韧性断裂。  相似文献   

16.
采用累积叠轧法制备了初始Zr层厚度不同的两种Nb/Zr金属层状复合板并对其在叠轧过程中的微观结构、织构演化和力学性能进行了研究。结果显示, Nb/Zr层状复合材料的界面结合良好,异质界面处无金属间化合物产生。随着叠轧道次增加,层状复合结构内部形成了贯穿于多个金属层的剪切带组织,初始Zr层厚度为1 mm的复合板较Zr层厚度为2 mm的复合板易于发生Zr层的颈缩、断裂和分离。Nb层内主要为位错胞状结构, Zr层内为高位错密度晶粒与动态回复晶粒的混合组织。此外,不同初始Zr层厚度的复合板中Nb层的织构演化特征不同:当初始Zr层厚度为1 mm时,Nb表现为强立方取向;当初始Zr层厚度为2 mm时,随着叠轧道次增加,旋转立方取向始终为主导的织构组分。两种复合板中Zr层的织构演化特征一致,即经一道次叠轧后,{0001}基面双峰织构为主要织构组分。随着叠轧道次增加,基面双峰织构略有减弱,同时出现了较弱的{11-20}丝织构。单轴拉伸测试表明,随着叠轧道次增加两种不同Zr层厚度的复合板屈服强度和抗拉强度均逐渐增大,而塑性延伸率呈现先减小后增大的趋势。经三道次叠轧后两种复合板的最大延伸率分别为14.2%和16.5%。叠轧过程中各金属显著的晶粒细化、Zr层内高位错密度晶粒与动态回复晶粒共存的混合组织以及Zr织构的特征演化是贡献于复合板具有高强度和良好塑性的原因。  相似文献   

17.
采用粉末热压法制备了纳米SiC质量分数为7. 5%的SiC_p/Mg-9Al复合材料薄板。通过对复合材料进行小压下量的多道次热轧,研究了热轧道次对其显微组织和力学性能的影响。结果表明:随着轧制道次的增加,晶粒尺寸越来越细小; SiC颗粒的分布也变得更加均匀,同时部分SiC颗粒嵌入原始镁颗粒中,硬度较高的SiC颗粒阻碍了相对较软的镁颗粒的移动,使得SiC颗粒-基体界面附近的位错密度增大和SiC颗粒和镁基体之间的结合增强。复合材料的抗拉强度和屈服强度也随着轧制道次的增加而增加,当轧制道次进行到6道次时,总变形量约为50%,获得相对最优的综合力学性能,抗拉强度为292. 5 N/mm2,屈服强度为252 N/mm2,伸长率为3%。复合材料的强度主要取决于晶粒尺寸、SiC颗粒的分布以及增强相和基体的结合程度。  相似文献   

18.
采用挤压铸造方法,制备了Al2O3颗粒增强20Cr25Ni20复合材料,在650℃下对该复合材料进行抗热震性研究,并且在相同实验条件下和高速钢进行了抗热震性能对比。结果表明:在第15次热震时,Al2O3(p)/20Cr25Ni20复合材料的宏观界面上出现了微小裂纹,并且Al2O3颗粒周围出现了薄氧化层,裂纹沿氧化层进行扩展和延伸;高速钢在第2次热震时就出现了宏观大裂纹。这说明Al2O3(p)/20Cr25Ni20复合材料的抗热震性比高速钢的好。  相似文献   

19.
为解决高熔点差多元合金制备方法存在的元素偏析、合金性能受限、制备成本高等问题,提出了高熔点差组元合金的累积叠轧-扩散合金化制备新工艺。采用SEM、EDS、TEM、XRD和万能试验机表征了累积叠轧-扩散合金化Cu-21Ni-5Sn合金的组织和性能,研究了累积叠轧和阶梯式扩散热处理工艺对Cu-21Ni-5Sn合金成分均匀性的影响和机理,并揭示了后续时效制度对Cu-21Ni-5Sn合金性能的影响和机理。结果表明:通过累积叠轧7道次+650 ℃/5 h+1000 ℃/8 h阶梯真空扩散热处理工艺,制备出了元素误差小于5%、成分均匀的Cu-21Ni-5Sn合金。采用累积叠轧实现减薄中间层、缩短扩散距离,增加晶界、位错等原子扩散通道,低熔点Sn元素与Cu、Ni元素在650 ℃形成高熔点(Cu,Ni)3Sn金属间化合物临界层,在1000 ℃高温加速Cu、Ni元素扩散。Cu-21Ni-5Sn合金在40%预冷变形下于470 ℃时效60 min充分调幅分解,基体中析出致密的与基体共格的DO22及L12有序固溶体,与α铜基体之间的取向关系为(-1-1-1 )Cu//(-2-20)DO22,(-200)Cu//(-310)L12。合金抗拉强度达到峰值916 MPa,弹性模量为135.4 GPa,合金导电率达到6.23% IACS。  相似文献   

20.
采用累积叠轧工艺制备了1mm厚的Al-Mn合金板,研究了不同轧制道次下Al-Mn合金板的微观组织和力学性能变化规律,并分析了累积叠轧工艺的作用机理。结果表明,随着累积叠轧道次的增加,Al-Mn合金板中的实际界面数与理论界面数的差距变大,结合程度不断提高;不同累积叠轧道次下Al-Mn合金板的抗拉强度、屈服强度和显微硬度都相对累积叠轧前有所提高,且随着累积叠轧道次的增加,合金板的抗拉强度逐渐增加,而不同叠轧道次下试样的断后伸长率较为接近;累积叠轧试样的衍射峰中心朝着低角度移动,且半峰宽与叠轧前相比有明显减小,而合金局部应变在累积叠轧后有所增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号