首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
徐峰  吴晓伟 《金属热处理》2023,48(1):249-252
某DT4E电磁纯铁零件真空退火后存在矫顽力超出设计要求的问题。针对此问题,对DT4E电磁纯铁进行了860~1150℃×4 h真空退火处理,研究了退火温度、磁性能测试试环尺寸以及原材料中杂质成分对其磁性能的影响。结果表明,随着退火温度的升高,磁感应强度B2500的变化呈“M”型,矫顽力Hc呈“V”型变化,最大磁导率μm与矫顽力Hc的变化趋势相反。最佳的真空退火温度为900℃,此时磁感应强度B2500为1.63 T,矫顽力Hc为25.19 A/m,最大磁导率μm为23.64 mH/m,满足设计要求,且磁环试件的规格尺寸对DT4E电磁纯铁磁性能的测量结果没有明显影响。原材料中杂质元素的含量对磁性能影响较大,当C含量较高时,磁导率下降,矫顽力升高,容易导致磁性能不合格。  相似文献   

2.
为优化屏蔽用电磁纯铁的磁性能,研究了Si含量及终轧温度(770~920 ℃)对屏蔽用电磁纯铁磁性能的影响。结果表明,随着硅含量增加到2.0%,最大磁导率先增大后减小,矫顽力与之相反,饱和磁感应强度逐渐减小但减幅较小。随着终轧温度的升高,晶粒中难磁化方向[111]组分先急剧减少后缓慢增多,有利的(110)[001]组分缓慢增多,偏差度先变小后增大。试验钢中磁性能最佳的成分和工艺是含1.4%Si的电磁纯铁840 ℃终轧,1100 ℃退火,其最大磁导率为37.84 mH/m,矫顽力为16.85 A/m,饱和磁感应为1.80 T,在直流低频弱磁场的环境下,屏蔽效能为13.92 dB。  相似文献   

3.
采用弯曲共振法测量合金的减振性能,研究了添加0. 3%Mn、0. 5%Si元素及不同的退火温度对Fe-Cr-Mo减振合金性能的影响。结果表明,Fe-Cr-Mo合金在900~1100℃退火温度范围内,随着退火温度的升高,阻尼和强度先增大后减小,均在1000℃存在峰值,而冲击吸收能量逐渐减小。同时,0. 3%Mn、0. 5%Si合金元素的添加对Fe-Cr-Mo合金减振性能和力学性能有较大影响。900℃和1000℃退火时,合金阻尼值分别降低10. 6%和16. 8%,1100℃退火时,阻尼值提高8. 1%。900~1100℃退火时,添加0. 3%Mn和0. 5%Si元素使抗拉强度提高;冲击吸收能量在900℃提高9. 1%,在1000℃和1100℃分别降低90. 8%和75. 4%。  相似文献   

4.
张楠  李岩  定巍 《金属热处理》2021,46(7):37-42
利用热力学模拟计算、扫描电镜(SEM)、X射线衍射仪(XRD)、拉伸试验机等设备研究了不同退火工艺下0.2C-5Mn-0.5Si-2.5Al中锰TRIP钢的相变规律、微观组织及力学性能,分析了Al对相变规律及工艺与组织性能的影响规律。结果表明:添加(质量分数)2.5 %Al后,两相区显著扩大,且A3温度明显提高,这有助于提高临界退火温度,进而加快奥氏体逆相变过程,有效地提高在较短临界时间(1、3 min)退火后的残留奥氏体含量;因2.5 %Al的添加,微观组织中出现了δ-铁素体;在临界退火温度范围内(760~880 ℃),随着退火温度的升高,屈服强度呈现略微下降趋势,而抗拉强度逐渐增加,退火1 min时伸长率及强塑积随退火温度的增加先升高后降低,而退火3 min时伸长率及强塑积随退火温度升高呈持续下降趋势;试样在760 ℃退火3 min可获得最佳的力学性能,抗拉强度为927.69 MPa,伸长率为50.12%,强塑积为46 503.00 MPa·%。  相似文献   

5.
采用金相显微镜、电子背散射衍射(EBSD)、维氏硬度计、差示扫描量热仪(DSC)和电阻-温度测量仪,研究了不同温度(300~900 ℃)退火1 h对Ni47Ti44Nb9合金冷轧板的微观组织、力学性能及相变行为的影响。结果表明,当热处理温度低于400 ℃时,材料硬度值变化不明显,合金未发生马氏体相变;当退火温度为400 ℃时,硬度值显著下降,合金开始发生再结晶;当退火温度在500~800 ℃时,随着温度升高,再结晶越充分,马氏体相变温度越高,相变焓增加。800 ℃退火1 h后,合金基本完成再结晶,晶粒尺寸约11 μm;当退火温度升高至900 ℃,晶粒出现长大现象,晶粒尺寸增加至20 μm。  相似文献   

6.
研究了不同磁场退火和浸漆固化工艺对Fe82Si3.8B13.9C0.3非晶合金环形铁芯损耗和磁性能的影响,并与1K101合金铁芯进行了对比。结果表明:与1K101合金相比,Fe82Si3.8B13.9C0.3合金铁芯的最佳退火温度低于1K101合金,其中纵磁退火时达到最低,为330 ℃。纵磁退火Fe82Si3.8B13.9C0.3合金铁芯有着更高的饱和磁感应强度,B3500 A/m=1.611 T。经350 ℃无磁场退火处理后,Fe82Si3.8B13.9C0.3合金铁芯的损耗P50 Hz, 1.4 T=0.360 W/kg,稍高于1K101合金;经330 ℃纵磁退火处理后,Fe82Si3.8B13.9C0.3合金铁芯的损耗P50 Hz, 1.4 T=0.257 W/kg,也高于1K101合金;经350 ℃横磁退火处理后损耗P50 Hz, 1.4 T=0.163 W/kg,低于1K101合金。纵磁退火Fe82Si3.8B13.9C0.3合金铁芯经浸漆固化处理后,磁通密度B800 A/m=1.341 T,比纵磁退火1K101合金浸漆固化铁芯高15%;纵磁退火且浸漆的Fe82Si3.8B13.9C0.3合金铁芯损耗低于1K101合金浸漆铁芯,且随着频率升高优势更加明显;当频率大于1000 Hz时,纵磁退火且浸漆的Fe82Si3.8B13.9C0.3合金铁芯的损耗值低于未浸漆铁芯。  相似文献   

7.
结合差示扫描量热、显微硬度和能谱分析,研究了时效工艺对(Ni50Ti35Hf15)90Nb10高温形状记忆合金的马氏体相变行为和热循环稳定性的影响。结果表明,在450℃时效处理,随着时效时间延长,试验合金的奥氏体相变峰值温度(Ap)和马氏体相变峰值温度(Mp)均先升高后降低;在550、650℃时效处理,随着时效时间延长,奥氏体相变峰值温度(Ap)和马氏体相变峰值温度(Mp)均逐渐下降,且相较550℃时效,650℃时效时相变温度下降得更显著。550℃时效1 h的试样具有最佳的热循环稳定性,经10次热循环后的ΔAp和ΔMp分别为1.5℃和5.8℃。  相似文献   

8.
通过铜辊甩带法制备了成分为Fe73.5-xSi13.5B9Cu1Nb3Nix(x=0、1、2、3)的非晶带材,并对其进行退火处理。利用XRD、DSC、VSM和软磁直流测试仪等对带材的相结构、热稳定性以及软磁性能进行测试分析。结果表明,所制备合金带材淬火态下均为完全非晶结构,经560 ℃保温60 min退火处理后,合金中形成了非晶和α-Fe(Si)纳米晶双相共存结构。随着Ni含量的增加,整体上非晶带材的一级起始晶化温度Ts1和二级起始晶化温度Ts2先减小后增大,两级起始晶化温度之差ΔTs整体呈下降的趋势,由166.0 ℃下降至132.8 ℃,热稳定性降低。淬火态下,Ni元素的添加使得非晶带材的软磁性能有所恶化。经退火处理后,带材的软磁性能明显提升,当Ni含量x=1时,具有较好的软磁性能,其饱和磁化强度为157.7 emu/g,矫顽力为6.8 Oe。  相似文献   

9.
在400、600、800、1100 ℃下对FeMoCrVTiSix(x=0、0.3)进行退火处理,利用X射线衍射仪、扫描电镜、差热扫描分析仪、显微硬度计、万能试验机等探究了不同退火温度对合金的组织和力学性能的影响。结果表明,Si元素的添加提高了FeMoCrVTi高熵合金的热稳定性。经过退火处理,FeMoCrVTiSix高熵合金的微观组织仍为以BCC固溶相为主的枝晶结构,但在枝晶边缘出现黑色的细小富Ti相,其含量随着退火温度的增加而增多,在1100 ℃下富Ti相回溶。富Ti相的析出提高了合金的硬度,其中,800 ℃退火后试样的硬度达到最大值,FeMoCrVTi试样的硬度达到932 HV0.2,FeMoCrVTiSi0.3的硬度达到998 HV0.2。  相似文献   

10.
用真空氢气退火炉对两个批次DT4C纯铁零件进行了高温退火试验,研究了1050~1150 ℃高温退火温度及不同冷却速度下零件尺寸及矫顽力的变化。结果表明,当采用1050~1150 ℃高温退火后能明显降低矫顽力,但零件外圆尺寸发生不规则变化,最大收缩率在0.20%左右,最大膨胀率在0.27%左右。矫顽力不合格的零件如尺寸误差能合要求的,可采用1050~1150 ℃退火降低矫顽力。矫顽力不合格的原材料,先要对毛坯料进行1050~1150 ℃高温退火,再对机加工后零件进行900 ℃中温去应力退火。采用1050~1150 ℃高温退火时,可以将1120 ℃→900 ℃过程的冷却速度提高至120 ℃/h,以缩短零件的处理周期。  相似文献   

11.
退火温度对钴铁氧体薄膜结构和性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法结合匀胶旋涂工艺在复合基片(Pt/Ti/SiO2/Si)上制备了钴铁氧体(CoFe2O4)薄膜,利用XRD、SEM、VSM分析了薄膜的微结构以及磁性能,研究了不同退火温度对钴铁氧体薄膜的结构和磁性能的影响.结果表明,钴铁氧体在500℃时开始形成尖晶石相.随着退火温度的增高,钴铁氧体晶粒逐渐长大,饱和磁化...  相似文献   

12.
研究了Sn、Si和C元素掺杂对低Mn含量MnAl合金的相结构和磁性能的影响。结果表明:Sn元素的掺杂比Si元素的掺杂更容易稳定磁性τ相。C、Sn和C、Si双元素均比单元素掺杂有利于稳定磁性相。随着Mn含量的增加,1100℃热处理后,MnAl合金相结构中出现少量高温ε相,后续再进行500℃热处理,ε相转变成磁性τ相。在Mn50Al47Sn3样品中得到了131.8 emu/g的最大饱和磁化强度,在Mn50Al46Si4C3样品中获得1.63 kOe的最大矫顽力。  相似文献   

13.
研究了退火工艺对3003铝合金板微观组织与力学性能的影响。试验结果表明,3003铝合金板退火后第二相粒子主要为Al6(Mn, Fe)、Al6Mn以及在位错或者亚晶界等缺陷处形成的α-Al(Fe, Mn)Si相。随退火温度升高和保温时间延长,第二相粒子发生粗化,并出现了少量的弥散第二相。当退火温度为450 ℃时,第二相又重新固溶到基体。随退火温度升高,3003铝合金板硬度稳定在31.0 HV0.5 左右,抗拉强度整体上呈下降趋势,伸长率呈增加趋势。  相似文献   

14.
(Fe0.6Co0.4)86HfTB6Cu1 nanocrystalline alloy obtained in isothermal annealing process from amorphous precursor was investigated as candidate of soft magnetic materials for high temperature applications. Co substitution for Fe can enhance the curie temperature of amorphous alloy (Tc = 630℃) and improve the magnetization of nanocrystalline alloy at high temperature ( ≈ 1.56T at 550℃). After annealing amorphous precursor at 550℃ for 1 hour, the optimum nanocrystalline alloy can be obtained which shows the local minimum coercivity ( ≈ 16 A/m). The coercivity increases with the increase of annealing temperature corresponding to the formation of ferromagnetic phase in the secondary crystallization. Furthermore, additions of Hf and B elements reduce the melting temperature of the alloy studied comparing with the Fe-Co binary alloy.  相似文献   

15.
NANOCRYSTALLINESTRUCTUREANDINITIALPERMEABILITYOFANNEALEDFe_(73.5)Cu_1W_3Si_(13.5)B_9AlloyZHANGXiangyi,ZHANGJingwuandZHENGYangze?..  相似文献   

16.
以铝灰、粉煤灰和碳黑为主要原料,采用碳热铝热复合还原氮化工艺制备了Sialon粉体.研究了原料组成(Si/Al比分别为1.5、1和0.27)、碳黑含量(分别为10%、17%、22%和27%)以及合成反应温度(分别为1400, 1450, 1500 ℃)对生成物相的影响.结果表明,合成温度为1450 ℃,可以得到较纯的物相;随着还原剂碳黑含量的增加,使还原氮化反应进行的更为充分;在原料中Si/Al比为1时,加入17%的碳黑可以得到主要物相为Si_3Al_3O_3N_55(β-Sialon,z=3)和SiAl_4O_2N_4(15R)的产物;在原料中Si/Al比为1.5时,即加入80%的粉煤灰,在1450 ℃可以制备较纯的Si_3Al_3O_3N_5粉.  相似文献   

17.
介绍了AISI 422钢扇型板毛坯的制造工艺流程。冶炼时严格控制Si、Mn、Ni、S的含量。锻造时控制始锻温度为1150℃,终锻温度为920℃,并按正确工艺退火、调质。  相似文献   

18.
介绍了耐-40℃低温冲击球墨铸铁的生产试验过程,通过调整w(Si)量、降低w(Mn)量、加入合金元素Ni,并进行高温铁素体化退火处理,使铸件本体Rm超过420 MPa、-40℃低温冲击韧度平均值超过14 J的力学性能指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号