首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
通过热模拟试验,研究了轧管后控冷温度(TA)对33Mn2V钢再加热后奥氏体晶粒尺寸及其减径后相变行为的影响.结果表明:当TA≥Ar,时,再加热后的奥氏体晶粒将不能被细化;当TA≤Ar1时,再加热后的奥氏体晶粒得到显著细化.当冷速为0.3℃/s,控冷温度为600℃(≥Ar3)时,可获得细小均匀的铁素体和珠光体组织;控冷温度为300℃(≤Ar1)时,得到以铁素体和珠光体为主的组织,但其均匀性较差.  相似文献   

2.
研究了等温球化退火加热温度对高碳钢碳化物球化质量的影响。采用扫描电镜(SEM)和图像软件等技术手段分析碳化物的数量、尺寸和形貌,表征试验钢的球化质量。结果表明,加热温度由750℃升高至790℃,锻态组织中片层状珠光体都基本实现了球化。随着加热温度的升高,奥氏体逐渐均匀化,析出片状碳化物几率升高,影响球化质量。770℃加热时碳化物数量最多,平均粒径、圆度、粒径均方差最小,尺寸均匀性最好。  相似文献   

3.
本文论述了影响热处理钢轨性能的组织参数——奥氏体晶粒尺寸、珠光体片间距、渗碳体片厚度等。指出奥氏体晶粒尺寸主要受加热温度(考虑到电感应加热速度快,保温停留时间短)的控制,而珠光体片间距和渗碳体片厚度主要取决于过冷奥氏体的转变温度和冷却速度,当然也受合金元素的加入及其含量影响。同时指出,珠光体钢的强度主要受珠光体的片间距的控制,而钢的韧性则主要取决于奥氏体晶粒尺寸的大小。珠光体片间距越细则强度越高,而奥氏体晶粒尺寸越小则钢的韧性越高,且钢的脆性转变温度越低。 钢轨热处理必须选择最佳工艺参数,细化轨钢的组织参数,达到强韧化目的。  相似文献   

4.
研究了等温球化退火加热温度对高碳钢碳化物球化质量的影响。采用扫描电镜(SEM)和图像软件等技术手段分析碳化物的数量、尺寸和形貌,表征试验钢的球化质量。结果表明,加热温度由750℃升高至790℃,锻态组织中片层状珠光体都基本实现了球化。随着加热温度的升高,奥氏体逐渐均匀化,析出片状碳化物几率升高,影响球化质量。770℃加热时碳化物数量最多,平均粒径、圆度、粒径均方差最小,尺寸均匀性最好。  相似文献   

5.
对含碳量为0.54%的高速车轮钢热处理工艺进行实验研究,得到不同晶粒尺寸和珠光体片间距的显微组织,在室温下对具有不同显微组织的紧凑拉伸(CT)试样进行断裂韧性测试。结果表明,车轮钢的平均晶粒尺寸随奥氏体化温度升高而增加;珠光体片间距随冷却速率增加而减小。车轮钢室温下的断裂模式为解理断裂,断裂韧性主要取决于晶粒尺寸的大小,晶粒尺寸越小,断裂韧性越高。珠光体片间距对断裂韧性有一定影响,粗大的珠光体片间距会降低断裂韧性,并且当晶粒尺寸较小时,珠光体片间距的影响更明显。因此,实际工程中为提高车轮钢断裂韧性,合理的奥氏体化温度是关键,同时需适当增加车轮钢奥氏体化后的冷却速率。  相似文献   

6.
对碳的质量分数为0.54%高速车轮钢轮辋进行了不同奥氏体化温度和冷却速率热处理,得到具有不同晶粒尺寸和珠光体片间距的显微组织,在20^-120℃下对具有不同显微组织的紧凑拉伸(CT)试样进行断裂韧性测试。结果表明:在实验温度范围内,不同显微组织车轮钢断裂韧性均随温度的降低而降低,温度对不同显微组织车轮钢材料断裂韧性的影响主要是由于温度对材料流变应力的改变以及CT试样断裂模式的变化。温度较高时,解理断裂的模式为扩展控制,晶粒尺寸和珠光体片间距越小断裂韧性越高;温度较低时,解理断裂的模式为形核控制,显微组织对断裂韧性的影响不明显。  相似文献   

7.
热处理工艺对高强韧耐磨铸钢组织和性能的影响   总被引:1,自引:0,他引:1  
研究了淬火温度及回火温度对高强韧耐磨铸钢组织和性能的影响.结果表明:淬火温度低于930 ℃时,材料的硬度随淬火温度的升高而增大;高于930 ℃时,硬度降低,在930 ℃出现硬度峰值;冲击韧度随淬火加热温度的升高先降低后增大.随着回火温度的升高,材料的硬度缓慢降低,而冲击韧度值升高.高强韧耐磨铸钢经930 ℃×2 h淬火(油淬)+240 ℃×2 h回火+240 ℃×2 h回火后,具有较高的强韧性,硬度≥54 HRC,冲击韧度≥43 J/cm~2,组织为回火马氏体+少量的残留奥氏体,试样冲击断口为准解理断裂.  相似文献   

8.
对碳的质量分数为0.54%高速车轮钢轮辋进行了不同奥氏体化温度和冷却速率热处理,得到具有不同晶粒尺寸和珠光体片间距的显微组织,在20~-120℃下对具有不同显微组织的紧凑拉伸(CT)试样进行断裂韧性测试。结果表明:在实验温度范围内,不同显微组织车轮钢断裂韧性均随温度的降低而降低,温度对不同显微组织车轮钢材料断裂韧性的影响主要是由于温度对材料流变应力的改变以及CT试样断裂模式的变化。温度较高时,解理断裂的模式为扩展控制,晶粒尺寸和珠光体片间距越小断裂韧性越高;温度较低时,解理断裂的模式为形核控制,显微组织对断裂韧性的影响不明显。  相似文献   

9.
通过热模拟试验得到55SiCrV钢的CCT曲线和奥氏体晶粒长大曲线,确定了淬火温度选择范围;利用双因子正交试验,研究了热处理参数对其力学性能及组织的影响。结果表明:在850~930℃加热温度范围内,Cr、V元素形成难溶碳化物,阻碍晶粒长大;随着温度的提高,55SiCrV钢奥氏体晶粒尺寸基本不变,晶粒度达到10级;加热温度930℃以上时,原子扩散能力增大,且难溶碳化物逐渐溶解,奥氏体晶粒度逐渐粗化。在870~930℃淬火温度范围内,随温度提高,55SiCrV钢抗拉强度先升高后下降;随回火温度提高,强度逐渐降低,塑性提高。900℃淬火+410℃回火工艺下,55SiCrV钢组织为针状铁素体与M_3C碳化物组成的细小回火屈氏体,具有较好的疲劳性能和抗弹减性能。  相似文献   

10.
研究了加热速率、加热温度、保温时间及冷却速率等热处理工艺参数对高速车轮钢CL50D热处理态的晶粒度和断裂韧性的影响。结果表明,对轧态车轮钢采用快速加热(10~25℃/min)至约850℃,保温30~60 min后,经1~2℃/s控制冷却至室温可得到细化且均匀的珠光体+网状铁素体组织,断裂韧性优异Kq可达90 MPa.m1/2以上。  相似文献   

11.
选取U76CrRE钢坯进行1100、1200、1300 ℃分别保温1、2、3 h的热处理,使用FEI-QUANTA400型扫描电镜对夹杂物进行了观察,利用Axiovert型蔡司光学显微镜对微观组织进行观察,使用Qness-Q10A+全自动显微硬度计进行硬度测试。结果表明,热处理对U76CrRE稀土重轨钢中夹杂物的作用明显,使夹杂物形状与尺寸都有明显改善,随着加热温度的升高,可以进一步优化MnS和复合夹杂物的形貌和尺寸。在1100 ℃加热时,MnS与复合夹杂物尺寸随着保温时间的增加而减小,形状得到明显改善;在1200 ℃加热时,随着保温时间的增加,MnS尺寸减小,复合夹杂尺寸变大。U76CrRE稀土重轨钢的晶粒随着加热温度的升高明显增大,硬度呈现先减后增的趋势,随着保温时间的增加逐渐减小。在1100 ℃加热时,试验钢中组织皆为马氏体、贝氏体和残留奥氏体,且晶界均不明显;在1200 ℃与1300 ℃保温超过1 h后,试验钢中网状渗碳体明显;在1300 ℃保温1 h时,晶界积碳严重,碳化物未得到有效溶解。在1200 ℃保温1 h时,试验钢中晶粒均匀,晶界明显,组织主要为残留奥氏体与珠光体,组织均匀。  相似文献   

12.
热轧高强度重轨钢的珠光体团块尺寸和层片间距以及钢轨表面脱碳层深度对钢轨在磨损和滚动接触疲劳条件下的使用性能具有重要影响.在邯钢采用SMS Meer万能机组轧制100 m定尺超长轨的设备工艺条件下,为了制定合理的U71Mn钢坯加热制度、细化珠光体组织和控制表面脱碳层深度,在实验室进行了加热工艺参数对U71Mn钢轨钢奥氏体晶粒尺寸和脱碳层深度的影响规律的实验研究.实验结果表明:U71Mn钢坯在加热温度升至1050~1150℃而均热时间为35min时,奥氏体晶粒尺寸和脱碳层深度开始有明显增长的趋势,奥氏体晶粒尺寸在120~160μm但比较均匀,有效脱碳层深度增加到0.42~0.61mm;当加热温度升高到1200~1250℃时,奥氏体晶粒尺寸超过180μm并随着保温时间的延长出现显著的不均匀长大,有效脱碳层深度增加到0.81~0.90mm.根据上述实验数据,对邯钢U71Mn钢加热工艺规程提出了优化参数,使热轧钢轨的珠光体组织、力学性能和脱碳层深度满足了国家标准和铁道部标准的要求.  相似文献   

13.
加热速率对GCr15轴承钢铸坯表面组织有较大影响。利用DIL805A热膨胀仪进行热模拟试验,通过分析GCr15轴承钢在连续加热过程中的热膨胀曲线,研究了不同加热速率下的奥氏体转变过程,分析了加热温度对奥氏体转变温度和奥氏体转变量的影响,分析了不同加热速率下奥氏体转变规律和大断面铸坯表面组织。结果表明:GCr15轴承钢中珠光体转变为奥氏体,温度范围约为760~810 ℃;(Fe,Cr)3C向奥氏体中的溶解,温度范围约为810~1 100 ℃;奥氏体的成分均匀化温度大于1 100 ℃。若GCr15大断面铸坯表面过热度大,相变后晶粒粗大,相对于内部组织其表面的耐磨性和抗疲劳性下降,且铸坯表面奥氏体浓度均匀性差,后续液析碳化物溶解过程受阻碍,碳化物溶解浓度不均匀,表面的组织性能受到影响。根据J-M-A方程,计算了模型参数,GCr15轴承钢激活能Q约为7.156×105 J/mol,n=0.52,k0=75。  相似文献   

14.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

15.
热成形过程中的加热温度对板料性能影响非常显著。本文研究了在不同加热温度下板料的微观组织,并通过氧化法和晶粒边界腐蚀法显示22MnB5钢奥氏体晶界,测定板料晶粒尺寸的变化。结果表明:随着加热温度的升高,板料微观组织马氏体板条束宽度和奥氏体晶粒尺寸随之增大,在900℃时晶粒尺寸适中且分布较为均匀,且氧化法较晶粒边界腐蚀法显示的晶粒尺寸偏细。测定板料抗拉强度,在900℃时出现峰值,且此温度下板料硬度值约为550HV,因此,加热温度900℃,保温时间3min,板料综合性能较好。  相似文献   

16.
通过在Gleeble-1500热模拟试验机上的模拟加热和冷却实验,研究了在不同温度进行奥氏体化后,同一等温温度下得到的珠光体轨钢的显微组织和力学性能。结果表明:随着奥氏体化温度升高,实验钢的原始奥氏体晶粒尺寸增大,相变后珠光体组织中珠光体域的尺寸也随之增大,而珠光体片层间距随奥氏体化温度的升高而变小。力学性能测定结果表明,实验钢的硬度随奥氏体化温度的升高,呈上升趋势,冲击韧度呈下降趋势。从珠光体转变机理方面对上述关系进行了分析,阐明了奥氏体化温度对控制珠光体钢轨组织和性能的影响。  相似文献   

17.
热轧过程对T7钢帘线组织与性能的影响   总被引:1,自引:0,他引:1  
定量分析观察了国产和进口 T7钢帘线盘条产品的微观组织、硬度和不同部位的织构,并对国产T7钢盘条在1060℃开轧和900 ℃、800℃、750℃终轧的条件下进行了热轧加工的热模拟试验.结果表明,随终轧温度的降低,珠光体球团尺寸因奥氏体晶粒减小而减小,冷却速度降低使珠光体片层间距增大且硬度下降,盘条内外温度梯度升高而使表层软取向晶粒数目增多.分析表明,终轧温度应在850℃~900℃范围内适当选择.热轧冷却时应注意促使珠光体转变尽量在等温条件下完成,以保持珠光体片层间组织的均匀性和盘条良好的深拉拔性能.  相似文献   

18.
以稀土5Cr钢为对象,研究了热处理工艺(870、900、930 ℃保温50 min水淬,670、690、710 ℃保温90 min回火)对其组织及第二相析出行为的影响。结果表明,试验钢经870 ℃淬火后,组织未完全奥氏体化;随着淬火温度的升高,试验钢完全奥氏体化,原始奥氏体平均晶粒尺寸从900 ℃的13.49 μm增大到930 ℃的15.01 μm,且组织均匀性明显下降。合适的淬火温度为900 ℃。在670~710 ℃回火后,组织分布为回火屈氏体、回火屈氏体+回火索氏体、回火索氏体。回火后第二相为分布在基体上的Cr7C3碳化物及在界面聚集的Cr23C6碳化物。随着回火温度的升高,Cr23C6碳化物比例逐渐增加。为避免回火过程中M23C6型碳化物的聚集和粗化,合适的回火温度为690 ℃。  相似文献   

19.
许多工程构件,需要表面具有高硬度,而整体要求有较高强韧性。本文试验了TSA钢薄层淬火工艺,得到;表层高硬度整体有较高强韧性的组织。1试样及其热处理试样尺寸为今14×12mm,分别经调质十预热十淬火一低温回火。加热均在中温盐浴炉中进行。2试验结果及讨论(1)调质处理试样经760℃×15min水淬,660℃×1.5h回火,使片状珠光体转变为粒状回火索氏体,其硬度为29.5~30HRC。(2)预热对淬硬层的影响由表1可见,淬硬层深度随预热温度降低而减小,预热温度越高,奥氏体化驱动力越大,奥氏体化时间越短。共权铜加热速度小于104C/S时…  相似文献   

20.
研究了氮含量与终轧温度对直接车削用非调质钢组织和性能的影响规律。结果表明,随着氮含量的增加,钢中的铁素体含量逐渐增多,且铁素体组织从晶界向晶内扩展;钢的珠光体团尺寸减少,但幅度较小,而原奥氏体晶粒尺寸先明显减小后增加;氮含量为0.0190%的材料具有最细小的原奥氏体晶粒尺寸和较细的珠光体团尺寸。氮含量为0.0190%、终轧温度为850 ℃时,材料具有最佳的室温综合力学性能,此时,材料的屈服强度640 MPa,抗拉强度915 MPa,伸长率22%,断面收缩率63%,冲击吸收能量82 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号