首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Treatment of the 5'-carboxaldehyde derived by Moffatt oxidation of 6-N-benzoyl-2',3'-O-isopropylideneadenosine (1) with the "(bromofluoromethylene)triphenylphosphorane" reagent and deprotection gave 9-(6-bromo-5, 6-dideoxy-6-fluoro-beta-d-ribo-hex-5-enofuranosyl)adenine (4). Parallel treatment with a "dibromomethylene Wittig reagent" and deprotection gave 9-(6,6-dibromo-5, 6-dideoxy-beta-d-ribo-hex-5-enofuranosyl)adenine (7), which also was prepared by successive bromination and dehydrobromination of the 6'-bromohomovinyl nucleoside 8. Bromination-dehydrobromination of the 5'-bromohomovinyl analogue 11 and deprotection gave (E)-9-(5, 6-dibromo-5,6-dideoxy-beta-d-ribo-hex-5-enofuranosyl)adenine (15). Compounds 4, 7, and 15 were designed as putative substrates of the "hydrolytic activity" of S-adenosyl-l-homocysteine (AdoHcy) hydrolase. Enzyme-mediated addition of water across the 5,6-double bond could generate electrophilic acyl halide or alpha-halo ketone species that could undergo nucleophilic attack by proximal groups on the enzyme. Such type II (covalent) mechanism-based inactivation is supported by protein labeling with 8-[3H]-4 and concomitant release of bromide and fluoride ions. Incubation of AdoHcy hydrolase with 7 or 15 resulted in irreversible inactivation and release of bromide ion. In contrast with type I mechanism-based inactivation, reduction of enzyme-bound NAD+ to NADH was not observed. Compounds 4, 7, and 15 were not inhibitory to a variety of viruses in cell culture, and weak cytotoxicity was observed only for CEM cells.  相似文献   

2.
The synthesis and pharmacological profile of several cyano (1a-e) and carboxamido (2a-h) side-chain-substituted analogues of 1', 1'-dimethyl-Delta8-THC are described. Commercially available cyano compound 3 was transformed to the resorcinol 6 in a three-step sequence. Condensation of 6 with p-menth-2-ene-1,8-diol formed the THC 7a which, with sodium cyanide/DMSO, gave 1b. Protection of the phenol in 7a as the MOM derivative provided the common intermediate 8 for the synthesis of 1a,c,e. Compound 1d was also synthesized from 7a via the aldehyde 9a. Base hydrolysis of 1b gave the acid 10 which, via its acid chloride and subsequent treatment with the appropriate amine, formed the target compounds 2a-h. The pharmacological profile indicated that the cyano analogues 1a-e had very high CB1 binding affinity (0.36-13 nM) and high in vivo potency as agonists. Two analogues (1a,b) had extremely high potency in the mouse tetrad tests. The dimethylcarboxamido analogue 2a showed a similar profile to 1a,b. The high potency was also retained in analogue 2c. In contrast the sulfonamide analogue 2d was unique as it had greater affinity than Delta9-THC, yet it was practically devoid of agonist effects. This study suggests that the incorporation of a cyano or an amide substituent in the side chain of Delta8-THC-DMH can enhance potency and can also lead to compounds with a unique profile which have high binding affinity and are practically devoid of agonist effects.  相似文献   

3.
Most inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase function as substrates for the "3'-oxidative activity" of the enzyme and convert the enzyme from its active form (NAD+) to its inactive form (NADH) (Liu, S., Wolfe, M. S., and Borchardt, R. T. (1992) Antivir. Res. 19, 247-265). In this study, we describe the effects of a mechanism-based inhibitor, 6'-bromo-5', 6'-didehydro-6'-deoxy-6'-fluorohomoadenosine (BDDFHA), which functions as a substrate for the "6'-hydrolytic activity" of the enzyme with subsequent formation of a covalent linkage with the enzyme. Incubation of human placental AdoHcy hydrolase with BDDFHA results in a maximum inactivation of 83% with the remaining enzyme activity exhibiting one-third of the kcat value of the native enzyme. This partial inactivation is concomitant with the release of both Br- and F- ions and the formation of adenine (Ade). The enzyme can be covalently labeled with [8-3H]BDDFHA, resulting in a stoichiometry of 2 mol of BDDFHA/mol of the tetrameric enzyme. The 3H-labeled enzyme retains its original NAD+/NADH content. Tryptic digestion and subsequent protein sequencing of the [8-3H]BDDFHA-labeled enzyme revealed that Arg196 is the residue that is associated with the radiolabeled inhibitor. The partition ratio of the Ade formation (nonlethal event) to covalent acylation (lethal event) is approximately 1:1. From these experimental results, a possible mechanism by which BDDFHA inactivates AdoHcy hdyrolase is proposed: enzyme-mediated water addition at the C-6' position of BDDFHA followed by elimination of Br- ion results in the formation of homoAdo 6'-carboxyl fluoride (HACF). HACF then partitions in two ways: (a) attack by a proximal nucleophile (Arg196) to form an amide bond after expulsion of F- ion (lethal event) or (b) depurination to form Ade and hexose-derived 6-carboxyl fluoride (HDCF), which is further hydrolyzed to hexose-derived 6-carboxylic acid (HDCA) and F- ion (nonlethal event).  相似文献   

4.
3 beta-(Hexadec-2-ynylsulfonyl)androst-5-en-17-one, 2c, was designed as an analog of dehydroepiandrosterone sulfatide 1c, a potent, natural inhibitor of glucose-6-phosphate dehydrogenase (G6PDH). Nucleophilic substitution of 1-bromo hexadec-2-yne 11 with 3 beta-mercaptoandrost-5-en-17-one followed by oxidation afforded 2c. The propargylic sulfone 2c may tautomerize to the electrophilic allenic sulfone 3a and thus function as a masked affinity label of the steroidal binding site of G6PDH. Since 2c demonstrated low potency as an inhibitor of G6PDH, a sulfonylmethyl analog 4b was also designed and synthesized. Synthesis of 4b began by methylenation of androst-5-en-3,17-dione 17-ketal 6 with the Tebbe reagent, to yield the 3-methyleneandrost-5-ene 7. Hydroboration, followed by oxidation, gave a mixture of 3 alpha- and 3 beta-hydroxymethyl isomers 8a and 8b, respectively. The 3 beta alcohol 8b was converted to the thiol 10. Alkylation of 10 with 1-bromo-2-hexadecyne 11, followed by selective oxidation, gave the desired acetylenic sulfone 4b. Insertion of the methylene in 4a and 4b significantly increased their G6PDH inhibitory properties over the initial compounds, 2b and 2c.  相似文献   

5.
The design, synthesis, and antiviral activities of 6'-homoneplanocin A (HNPA, 3) and its congeners having nucleobases other than adenine, such as 3-deazaadenine (4), guanine (5), thymine (6), and cytosine (7), were described. Starting from the known cyclopentenone derivative 8, the optically active (mesyloxy)cyclopentene derivative 15 was prepared, which was condensed with nucleobases then deprotected to give target compounds 3-7. Of these compounds, HNPA showed an antiviral activity spectrum that was comparable to, and an antiviral specificity that was higher than, that of neplanocin A. HNPA proved particularly active against human cytomegalovirus, vaccinia virus, parainfluenza virus, vesicular stomatitis virus, and arenaviruses, which is compatible with an antiviral action targeted at S-adenosylhomocysteine hydrolase. HNPA appears to be a promising candidate drug for the treatment of these viruses.  相似文献   

6.
A number of the new enzymatically synthesized 2',5'-oligonucleotide trimers, namely, those containing the nucleosides 8-azaadenosine, toyocamycin, sangivamycin, formycin, 8-bromoadenosine, tubercidin, and guanosine, were found to inhibit protein synthesis and cellular proliferation after uptake into intact L and HeLa cells. 2',5'-Oligonucleotide trimers containing cytidine, inosine, uridine, and 1,N6-ethenoadenosine had some effect while those containing 2-chloroadenosine, 3-ribosyladenine, ribavirin, and 2-beta-D-ribofuranosylthiazole-4-carboxamide had no detectable effect on protein synthesis or cellular proliferation after uptake into L or HeLa cells. All of these 2',5'-oligonucleotide analogues inhibited protein synthesis in the in vitro rabbit reticulocyte lysate system except for the trimer containing ribavirin. Such nucleoside substitutions have further defined the substrate-specificity requirements for the endoribonuclease and/or the inhibitors for the 2',5'-phosphodiesterase. Most of the 2',5'-analogues were degraded in L-cell extracts so the endogenous nucleases are not very specific. The 2',5'-trimers containing tubercidin and 2-beta-D-ribofuranosylthiazole-4-carboxamide were quite stable in comparison to the 2',5'-A trimer. The inhibition of protein synthesis and cellular proliferation observed correlated well with the degradation of rRNA and polyadenylated mRNA observed after uptake of the 2',5'-analogues into intact L cells. The degradation of the polyadenylated mRNA appeared to be a more sensitive test than inhibition of cellular protein synthesis for determining biological activities of the 2',5'-oligonucleotide analogues.  相似文献   

7.
Thiazole-4-carboxamide adenine dinucleotide (TAD) analogue 7 containing a fluorine atom at the C2' arabino configuration of the adenine nucleoside moiety was found to be a potent inducer of differentiation of K562 erythroid leukemia cells. This finding prompted us to synthesize its hydrolysis-resistant methylenebis(phosphonate) and difluoromethylenebis(phosphonate) analogues 8 and 9, respectively. Since both TAD and benzamide adenine dinucleotide (BAD) are potent inhibitors of inosine monophosphate dehydrogenase (IMPDH), the corresponding fluorine-substituted methylenebis(phosphonate) analogue 12 of BAD was also synthesized. Thus, 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine (13) was converted in five steps into the corresponding methylenebis(phosphonate) analogue 18. Dehydration of 18 with DCC led to the formation of the bicyclic trisanhydride intermediate 19a, which upon reaction with 2',3'-O-isopropylidenetiazofurin (20) or -benzamide riboside (21) followed by hydrolysis and deprotection afforded the desired methylene-bridged dinucleotides 8 and 12, respectively. The similar displacement of the 5'-mesyl function of 2',3'-O-isopropylidene-5'-O-mesyltiazofurin (24) with the difluoromethylenebis(phosphonic acid) derivative gave the phosphonate 25 which was coupled with 13 to afford 26. The desired difluoromethylenebis(phosphonate) analogue 9 was obtained by deprotection with Dowex 50/H+. This compound as well as beta-CF2-TAD (4) showed improved differentiation-inducing activity over beta-CH2-TAD (3), whereas analogues containing the -CH2-linkage (8 and 12) were inactive.  相似文献   

8.
(1R,cis)-2-(3-Amino-2,2-dimethylcyclobutyl)ethanol (4) was used as a precursor in the synthesis of cyclobutyl nucleoside analogues containing guanine, 8-azaguanine, adenine or 8-azaadenine. All the compounds were evaluated as antiviral agents in a variety of assay systems. Some activity was noted for compound 13, 17, 19 and 20 against vaccinia virus and for compounds 11, 12, 13, 17, 19 and 20 against herpes simplex virus, at concentrations that were up to 10-fold below the cytotoxic concentrations for the host cells.  相似文献   

9.
In an earlier study, Liu et al. (Bioorg. Med. Chem. Lett. 1992, 2, 1741-1744) showed that both the E and Z isomers of 4',5'-didehydro-5'-fluoroaristeromycin were very potent irreversible inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. However, it was unclear from a mechanistic standpoint whether these vinyl fluorides were themselves type-I mechanism-based inhibitors causing reduction of enzyme-bound NAD+ or whether they were prodrug for aristeromycin-5'-carboxaldehyde, which was the ultimate type-I inhibitor. To elucidate this mechanism of enzyme inhibition, (4'S)- and (4'R)-aristeromycin-5'-carboxaldehydes (1a,b) were synthesized in this study and shown to be potent type-I mechanism-based inhibitors of AdoHcy hydrolase with k2/Ki values of 4.4 x 10(6) and 8.2 x 10(4)M-1min-1, respectively. However, Using 19F NMR and HPLC, it was shown that (4'S)-4,5'-dedehydro-5'-fluoraristeromycin in the presence of AdoHcy hydrolase did not release fluoride ion or generate aristeromycin-5'-carboxaldehyde (1a,b). These results suggest that the E and Z isomers of 4',5'-didehydro-5'-fluoroaristeromycin are inactivating AdoHcy hydrolase by directly reducing NAD+ to NADH and not using the hydrolytic activity of the enzyme to generate aristeromycin-5'-carboxaldehyde.  相似文献   

10.
[reaction: see text] A novel total synthesis of 3',5'-C-branched uridine azido acid has been accomplished using stereoselective aldehyde alkynylation, Ireland-Claisen rearrangement, and iodolactonization as the key reactions. Compared to traditional routes that start from carbohydrates, the present methodology is more efficient, flexible for future optimization, and provides access to both enantiomers of the products. Because the key chemistry does not involve the 3'- and 5'-C substituents, our route is a general approach to 3',5'-C alkyl nucleoside analogues.  相似文献   

11.
Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

12.
mRNA analogues containing 4-thiouridine residues at selected sites were used to extend our analysis of photo-induced cross-links between mRNA and 16S RNA to cover the entire downstream range between positions +1 and +16 on the mRNA (position +1 is the 5'-base of the P-site codon). No tRNA-dependent cross-links were observed from positions +1, +2, +3 or +5. Position +4 on the mRNA was cross-linked in a tRNA-dependent manner to 16S RNA at a site between nucleotides ca 1402-1415 (most probably to the modified residue 1402), and this was absolutely specific for the +4 position. Similarly, the previously observed cross-link to nucleotide 1052 was absolutely specific for the +6 position. The previously observed cross-links from +7 to nucleotide 1395 and from +11 to 532 were however seen to a lesser extent with certain types of mRNA sequence from neighbouring positions (+6 to +10, and +10 to +13, respectively); no tRNA-dependent cross-links to other sites on 16S RNA were found from these positions, and no cross-linking was seen from positions +14 to +16. In each case the effect of a second cognate tRNA (at the ribosomal A-site) on the level of cross-linking was studied, and the specificity of each cross-link was confirmed by translocation experiments with elongation factor G, using appropriate mRNA analogues.  相似文献   

13.
Interactions between some novel and potent monoamine oxidase inhibitors (MAOIs), acetylenic analogues of tryptamine, and rat liver microsomal cytochrome P450 (P450) as evidenced by visible spectra analysis were analysed. Compounds with a secondary aliphatic amine moiety throughout induced type II difference spectra and exhibited the highest affinity for P450, whereas tertiary amines induced type I spectral changes and showed diminished affinity. P450 dependent aniline hydroxylase activity was inhibited by all compounds in an irreversible time-dependent manner. Only tertiary aliphatic amines constituted the substrate for P450-dependent N-demethylase activity, with comparable kinetic parameters. The N-demethylated metabolites were identified by thin-layer chromatography and mass-spectrometric analyses. These findings describe the role of P450-dependent microsomal mono-oxygenase systems in the metabolism of some MAOI acetylenic tryptamine derivatives and the possible hepatic contribution to adverse interactions between MAOIs, endobiotics and sympathomimetic compounds.  相似文献   

14.
The R- and S-isomers of 6'-C-neplanocin A analogues, which are all known as inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase, were studied for their inhibitory effects on Human Immunodeficiency Virus type 1 (HIV-1) replication and HIV-1 Tat-mediated transactivation. The R-isomers showed much greater activity against AdoHcy hydrolase than the S-isomers. The same differential activity was observed against the HIV-1 replication and the Tat transactivation.  相似文献   

15.
BACKGROUND: The efficacy of highly active antiretroviral treatment (HAART) in HIV-1 disease may vary between nucleoside-naive and experienced patients as well as between patients with different viral phenotypes and in different stages of disease. OBJECTIVE: To investigate variables of importance for successful long-term viral suppression by analysing virological, clinical and immunological characteristics at initiation of protease inhibitor treatment on suppression of HIV RNA over 1 year. DESIGN: An open, non-randomized, observational clinical study. SETTING: Venh?lsan, Department of Dermatovenereology, S?der Hospital, Stockholm, Sweden. PATIENTS: A total of 147 unselected advanced patients with known HIV-1 infection for a mean of 7 years, of whom 37% had AIDS and who started treatment with a protease inhibitor during 1996. INTERVENTIONS: All patients received HAART with at least two nucleoside analogues in combination with either indinavir (81%) or ritonavir (19%). The majority (77%) had been previously treated with nucleoside analogues for a mean of 39 months. MEASUREMENTS: CD4+ lymphocyte count, plasma HIV-1 RNA, viral phenotype and HIV-1 coreceptor CCR-5 genotype at baseline. Viral load and CD4+ lymphocyte count were determined every 3 months. RESULTS: Patients were analysed on an intention-to-treat basis. The mean CD4+ lymphocyte count at baseline was 170 x 10(6)/l and the median viral load was 68 600 copies/ml. Heterozygosity for the delta32 deletion of the CCR-5 gene (delta32/wt) was found in 27%. MT-2 positive virus (syncytium-inducing) was isolated in 46%. Logistic regression revealed that nucleoside analogue experience and baseline log10 HIV-1 RNA were the only factors independently related to plasma HIV-1 RNA levels below 500 copies/ml after 1 year of treatment, which was found in 69%. CONCLUSION: The virological outcome after 1 year of HAART was strongly correlated to prior treatment history and baseline viral load, whereas CD4+ lymphocyte count, CCR-5 genotype and viral biological phenotype had less influence. The long-term antiviral efficacy of HAART was lowest in individuals with previous nucleoside analogue treatment and a high baseline viral load. In these individuals an even more aggressive treatment should be considered.  相似文献   

16.
orf186, a new member of the Nudix hydrolase family of genes, has been cloned and expressed, and the protein has been purified and identified as an enzyme highly specific for compounds of ADP. Its three major substrates are adenosine(5')triphospho(5')adenosine, ADP-ribose, and NADH, all implicated in a variety of cellular regulatory processes, supporting the notion that the function of the Nudix hydrolases is to monitor the concentrations of reactive nucleoside diphosphate derivatives and to help modulate their accumulation during cellular metabolism.  相似文献   

17.
A novel 5-o-carboranyl-containing nucleoside, 5-o-carboranyl-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil (6, CFAU), was synthesized as a potential intracellular neutron capture agent. This compound was prepared in five steps starting from 5-iodo-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil (1). The desired carboranyl derivative was obtained by addition of decaborane [as the bis(propionitrile) adduct] to the protected acetylenic nucleoside precursor followed by debenzoylation. The synthesis of CFAU was also performed by glycosylation of the suitably protected 5-o-carboranyluracil with the appropriate 2-fluoroarabinosyl derivative. This compound was evaluated for its cytotoxicity in human lymphocytes, monkey cells, and rat and human gliomas cells, as well as for antiviral activity against human immunodeficiency virus and herpes simplex virus type 1. Its biological activity was compared to 5-o-carboranyl-1-(2-deoxyribofuranosyl)uracil in these cell culture systems, human bone marrow cells, and mice. The results obtained to date suggest that CFAU has suitable characteristics as a sensitizer for boron neutron capture therapy.  相似文献   

18.
The mismatched double-stranded RNA (dsRNA), poly(I).poly(C12U), also termed Ampligen, exhibits a strong antiviral and cytoprotective effect on cells (human T-lymphoblastoid CEM cells and human T-cell line H9) infected with the human immunodeficiency virus type 1 (HIV-1). Untreated H9 cells infected with HIV-1 start to release the virus 3 days post-infection, while in the presence of 40 micrograms/ml (80 micrograms/ml) of poly(I).poly(C12U) the onset of virus production and release is retarded and does not occur before day 5 (day 6). We demonstrate that poly(I).poly(C12U) markedly extends the duration of the transient increase of 2',5'-oligoadenylate (2-5A) synthetase mRNA level and activity preceding virus production after infection of cells with HIV-1. Treatment of HeLa cells with poly(I).poly(C12U) was found to cause a significant increase in total (activated plus latent) 2-5A synthetase activity; no evidence was obtained that the level of latent (nonactivated) 2-5A synthetase is changed in cells treated with dsRNA plus interferon (IFN). Poly(I).poly(C12U) is able to bind and to activate 2-5A synthetase(s) from HeLa cell extracts. Addition of poly(I).poly(C12U) to HeLa cell extracts results in production of longer 2-5A oligomers (> or = 3 adenylate residues), which are better activators of RNase L. Both free and immobilized poly(I).poly(C12U) also bind to the dsRNA-dependent protein kinase (p68 kinase), resulting in autophosphorylation of the enzyme. Activation of the kinase by the free RNA occurs within a limited concentration range (10(-7) to 10(-6) grams/ml). Addition of HIV-1 Tat protein does not affect binding and activation of p68 kinase to poly(I).poly(C12U)-cellulose but strongly reduces the binding of the kinase to immobilized TAR RNA of HIV-1. We conclude that poly(I).poly(C12U) may antagonize Tat-mediated down-regulation of dsRNA-dependent enzymes.  相似文献   

19.
A series of nonpeptidic glutathione analogues where the peptide bonds were replaced by simple carbon-carbon bonds or isosteric E double bonds were prepared. The optimal length for the two alkyl chains on either side of the mercaptomethyl group was evaluated using structure-affinity relationships. Affinities of the analogues 14a-f, 23, and 25 were evaluated for a recombinant GST enzyme using a new affinity chromatography method previously developed in our laboratory. Analysis of these analogues gives an additional understanding for GST affinity requirements: (a) the carbon skeleton must conserve that of glutathione since analogue 14a showed the best affinity (IC50 = 5.2 microM); (b) the GST G site is not able to accommodate a chain length elongation of one methylene group (no affinity for analogues 14c,f); (c) a one-methylene group chain length reduction is tolerated, much more for the "Glu side" (14d, IC50 = 10.1 microM) than for the "Gly side" (14b, IC50 = 1800 microM); (d) the mercaptomethyl group must remain at position 5 as shown from the null affinity of the 6-mercaptomethyl analogue 14e; (e) the additional peptide isosteric E double bond (25) or hydroxyl derivative (23) in 14e did not help to retrieve affinity. This work reveals useful information for the design of new selective nonpeptidic and peptidase-stable glutathione analogues.  相似文献   

20.
Rabbit skeletal muscle glycogen synthase, a rate-limiting enzyme for glycogen biosynthesis, is regulated by multisite phosphorylation. The protein kinase glycogen synthase kinase 3 (GSK-3) phosphorylates 4 Ser residues (Ser-640, Ser-644, Ser-648, and Ser-652; also known as sites 3a, 3b, 3c, and 4, respectively) at the COOH terminus of the subunit. Phosphorylation of these sites by GSK-3 is sequential, from COOH- to NH2-terminal, and is wholly dependent on prior phosphorylation by casein kinase II at Ser-656 (site 5). Expression in Escherichia coli was used to generate mutant forms of glycogen synthase, S640A, S644A, and S648A, in which site 3a, site 3b, or site 3c was changed to Ala, respectively. The purified enzymes had -/+ glucose-6-P activity ratios in the range of 0.8-0.9. Phosphorylation by casein kinase II and GSK-3 gave results consistent with the model of obligate sequential action of GSK-3. Phosphorylation at site 5, sites 4 + 5, or sites 3c + 4 + 5 had no measurable effect on activity. When sites 3b + 3c + 4 + 5 were phosphorylated, modest inactivation resulted. Additional phosphorylation at site 3a, however, was potently inactivating, reducing the -/+ glucose-6-P activity ratio to 0.1 and increasing the glucose-6-P concentration needed for half-maximal activation by an order of magnitude. Introduction of each additional phosphate, in the order site 4, 3c, 3b, and 3a, caused an incremental reduction in the mobility of the subunit when analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results of this study demonstrate that GSK-3 phosphorylation of site 3a (Ser-640), and to a lesser extent, site 3b, correlates with inactivation of glycogen synthase by GSK-3. Evidence is also presented for an allosteric mechanism of inactivation whereby modification of one subunit influences the activity state of adjacent subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号