首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.  相似文献   

2.
In this paper, a novel multivariable predictive fuzzy-proportional-integral-derivative (F-PID) control system is developed by incorporating the fuzzy and PID control approaches into the predictive control framework. The developed control system has two main units referred as adaptation and application parts. The adaptation part consists of a F-PID controller and a fuzzy predictor. The incremental control actions are generated by the F-PID controller. The controller parameters are adjusted with the predictive control approach. The fuzzy predictor provides the multi-step ahead predictions of the plant outputs. Therefore, the F-PID controller parameters are adjusted by minimizing the errors between the predicted plant outputs and reference trajectories over the prediction horizon. The fuzzy predictor is trained with an on-line training procedure in order to adapt the changes in the plant dynamics and improve the prediction accuracy. The Levenberg–Marquardt (LM) optimization method with a trust region approach is used to adjust both the controller and predictor fuzzy systems parameters. In the application part, an identical F-PID controller of the adaptation part is used to control the actual plant. The adjusted parameter values are transferred to this identical controller at each time step. The performance of the proposed control system is tested for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems. The adaptation, robustness to noise, disturbance rejection properties together with the tracking performances are examined in the simulations.  相似文献   

3.
This paper addresses a three-dimensional (3D) path following control problem for underactuated autonomous underwater vehicle (AUV) subject to both internal and external uncertainties. A two-layered framework synthesizing the 3D guidance law and heuristic fuzzy control is proposed to achieve robust adaptive following along a predefined path. In the first layer, a 3D guidance controller for underactuated AUV is presented to guarantee the stability of path following in the kinematics stage. In the second layer, a heuristic adaptive fuzzy algorithm based on the guidance command and feedback linearization Proportional-Integral-Derivative (PID) controller is developed in the dynamics stage to account for the nonlinear dynamics and system uncertainties, including inaccuracy modelling parameters and time-varying environmental disturbances. Furthermore, the sensitivity analysis of the heuristic fuzzy controller is presented. Against most existing methods for 3D path following, the proposed robust fuzzy control scheme reduces the design and implementation costs of complicated dynamics controller, and relaxes the knowledge of the accuracy dynamics modelling and environmental disturbances. Finally, numerical simulation results validate the effectiveness of the proposed control framework and illustrate the outperformance of the proposed controller as well.  相似文献   

4.
In this paper we present a comparison of two fuzzy-control approaches that were developed for use on a non-linear single-input single-output (SISO) system. The first method is Fuzzy Model Reference Learning Control (FMRLC) with a modified adaptation mechanism that tunes the fuzzy inverse model. The basic idea of this method is based on shifting the output membership functions in the fuzzy controller and in the fuzzy inverse model. The second approach is a 2 degrees-of-freedom (2 DOF) control that is based on the Takagi-Sugeno fuzzy model. The T-S fuzzy model is obtained by identification of evolving fuzzy model and then used in the feed-forward and feedback parts of the controller. An error-model predictive-control approach is used for the design of the feedback loop. The controllers were compared on a non-linear second-order SISO system named the helio-crane. We compared the performance of the reference tracking in a simulation environment and on a real system. Both methods provided acceptable tracking performance during the simulation, but on the real system the 2 DOF FMPC gave better results than the FMRLC.  相似文献   

5.
In this study, a model reference fuzzy tracking control design for nonlinear discrete-time systems with time-delay is introduced. First, the Takagi and Sugeno (TS) fuzzy model is employed to approximate a nonlinear discrete-time system with time-delay. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy observer-based controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be efficiently solved using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method.  相似文献   

6.
The fuzzy model predictive control (FMPC) problem is studied for a class of discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems with hard constraints. In order to improve the network utilization as well as reduce the transmission burden and avoid data collisions, a novel event‐triggering–based try‐once‐discard (TOD) protocol is developed for networks between sensors and the controller. Moreover, due to practical difficulties in obtaining measurements, the dynamic output‐feedback method is introduced to replace the traditional state feedback method for addressing the FMPC problem. Our aim is to design a series of controllers in the framework of dynamic output‐feedback FMPC for T‐S fuzzy systems so as to find a good balance between the system performance and the time efficiency. Considering nonlinearities in the context of the T‐S fuzzy model, a “min‐max” strategy is put forward to formulate an online optimization problem over the infinite‐time horizon. Then, in light of the Lyapunov‐like function approach that fully involves the properties of the T‐S fuzzy model and the proposed protocol, sufficient conditions are derived to guarantee the input‐to‐state stability of the underlying system. In order to handle the side effects of the proposed event‐triggering–based TOD protocol, its impacts are fully taken into consideration by virtue of the S‐procedure technique and the quadratic boundedness methodology. Furthermore, a certain upper bound of the objective is provided to construct an auxiliary online problem for the solvability, and the corresponding algorithm is given to find the desired controllers. Finally, two numerical examples are used to demonstrate the validity of proposed methods.  相似文献   

7.
张天平  顾海军  裔扬 《控制与决策》2004,19(11):1223-1227
针对一类高阶互联MIMO非线性系统,利用TS模糊系统和神经网络的通用逼近能力,在神经网络控制器中引入模糊基函数,提出一种分散混合自适应智能控制器设计的新方案.基于等价控制思想,设计分散自适应控制器,无需计算TS模型.通过对不确定项进行自适应估计,取消了其存在已知上界的假设.通过理论分析,证明了闭环智能控制系统所有信号有界,跟踪误差收敛到零.  相似文献   

8.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

9.
Some industrial and scientific processes require simultaneous and accurate control of temperature and relative humidity. In this paper, support vector regression (SVR) is used to build the 2-by-2 nonlinear dynamic model of a HVAC system. A nonlinear model predictive controller is then designed based on this model and an optimization algorithm is used to generate online the control signals within the control constraints. Experimental results show good control performance in terms of reference command tracking ability and steady-state errors. This performance is superior to that obtained using a neural fuzzy controller.  相似文献   

10.
本文首先提出了MLMO原则,即被控过程的规模越大,越复杂,要获得满意的控制效果所须达到的控制目标就越多,为了对复杂的具有变化特性的过程进行有效的建模与控制,提出了过程划分的方法,之后又提出了具有后果相关性的模糊多目标预测控制(FMPC),用以实现对具有不确定性的复杂过程实现多目标的优化控制,最后将过程划分技术、FMPC方法与专家系统技术结合起来,提出了智能多目标优化控制方法(IMOC),并将其应用于对列车运行过程的控制,仿真结果证明了所提方法的有效性和优越性。  相似文献   

11.
具有未知非线性死区的自适应模糊控制   总被引:2,自引:0,他引:2  
基于滑模控制原理,利用模糊系统的逼近能力,提出一种自适应模糊控制方法.该方法提出一种简化非线性死区输入模型,取消了非线性死区输入模型的倾斜度相等以及死区边界对称的条件,还取消了非线性死区输入模型各种参数已知的条件.该方法通过引入逼近误差的自适应补偿项来消除建模误差和参数估计误差的影响.理论分析证明了闭环系统是半全局一致终结有界,跟踪误差收敛到零.仿真结果表明了该方案的有效性.  相似文献   

12.
This study introduces a fuzzy linear control design method for nonlinear systems with optimal H robustness performance. First, the Takagi and Sugeno fuzzy linear model (1985) is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, H performance design can be achieved in nonlinear control systems. In the proposed fuzzy linear control method, the fuzzy linear model provides rough control to approximate the nonlinear control system, while the H scheme provides precise control to achieve the optimal robustness performance. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. In the case that state variables are unavailable, a fuzzy observer-based H control is also proposed to achieve a robust optimization design for nonlinear systems. A simulation example is given to illustrate the performance of the proposed design method  相似文献   

13.
This study introduces a fuzzy control design method for nonlinear systems with a guaranteed H model reference tracking performance. First, the Takagi and Sugeno (TS) fuzzy model is employed to represent a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be solved very efficiently using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method  相似文献   

14.
A new design approach of a parallel distributed fuzzy sliding mode controller for nonlinear systems with mismatched time varying uncertainties is presented in this paper. The nonlinear system is approximated by the Takagi–Sugeno fuzzy linear model. The approximation error between the nonlinear system and the fuzzy linear model is considered as one part of the uncertainty in the uncertain nonlinear system. The time varying uncertainties are assumed to have the format which enables the design of the coefficient matrix of the sliding function to satisfy a sliding coefficient matching condition. With the sliding coefficient matching condition satisfied, a parallel distributed fuzzy sliding mode controller (PDFSC) is designed. The stability and the sliding mode of the fuzzy sliding control system are guaranteed. Also, the nonlinear system is shown to be invariant on the sliding surface. Moreover, the chattering around the sliding surface in the sliding mode control can be reduced by the proposed design approach. Simulation results are included to illustrate the effectiveness of the proposed fuzzy sliding mode controller. This work is partly supported by the the R.O.C. National Science Council through Grant NSC93-2213-E-197-004.  相似文献   

15.
一种新的自适应模糊滑模控制器设计方法   总被引:4,自引:0,他引:4  
对一类非线性系统提出一种新的自适应模糊滑模控制器设计方法。将自适应模糊控制与滑模控制有效地结合在一起,先用滑模控制使跟踪误差进入边界层内,然后启动自适应模糊控制器。该控制器可消除滑模控制器中出现的抖振,并可在存在模糊逻辑系统逼近误差情况下使系统跟踪误差小于预先给定的任意常数。仿真算例验证了所提出方法的有效性。  相似文献   

16.
17.
姜頔  刘向杰 《控制理论与应用》2015,32(12):1705-1712
在核电站运行过程中,U形管蒸汽发生器的水位作为重要参数需维持在安全的范围内.U形管蒸汽发生器结构复杂、系统逆动态、大范围变工况下具有强非线性,尤其在低负荷下,采用常规控制难以取得良好效果.本文建立了蒸汽发生器水位模糊模型,提出了能够满足系统输入输出约束的基于模糊模型的准–最小–最大预测控制方法.为了减轻在线运算负担,通过线性矩阵不等式离线计算椭圆不变集合及其对应的反馈控制律,然后依据系统的状态,二等分搜索对应的椭圆不变集参数,将在线计算简化为一个简单的优化问题.针对水位设定值跟踪和负荷变化的仿真结果表明了本文所提出控制策略的有效性.  相似文献   

18.
The design of a higher-layer controller using model predictive control (MPC) is considered. The higher-layer controller uses MPC to determine set-points for controllers in a lower control layer. In this paper the use of an object-oriented model of the system for making predictions is proposed. When employing such an object-oriented prediction model the MPC problem is a nonlinear, non-smooth optimization problem, with an objective function that is expensive to evaluate. Multi-start pattern search is proposed as approach to solving this problem, since it deals effectively with the local minima and the non-smoothness of the problem, and does not require expensive estimation of derivatives. Experiments in an emergency voltage control problem on a 9-bus dynamic power network show the superior performance of the proposed multi-start pattern-search approach when compared to a gradient-based approach.  相似文献   

19.
In this work, a dynamic switching based fuzzy controller combined with spectral method is proposed to control a class of nonlinear distributed parameter systems (DPSs). Spectral method can transform infinite-dimensional DPS into finite ordinary differential equations (ODEs). A dynamic switching based fuzzy controller is constructed to track reference values for the multi-inputs multi-outputs (MIMO) ODEs. Only a traditional fuzzy logic system (FLS) and a rule base are used in the controller, and membership functions (MFs) for different ODEs are adjusted by scaling factors. Analytical models of the dynamic switching based fuzzy controller are deduced to design the scaling factors and analyze stability of the control system. In order to obtain a good control performance, particle swarm optimization (PSO) is adopted to design the scaling factors. Moreover, stability of fuzzy control system is analyzed by using the analytical models, definition of the stability and Lyapunov stability theory. Finally, a nonlinear rod catalytic reaction process is used as an illustrated example for demonstration. The simulation results show that performance of proposed dynamic switching based fuzzy control strategy is better than a multi-variable fuzzy logic controller.  相似文献   

20.
This paper introduces a robust adaptive fuzzy controller as a power system stabilizer (RFPSS) used to damp inter-area modes of oscillation following disturbances in power systems. In contrast to the IEEE standard multi-band power system stabilizer (MB-PSS), robust adaptive fuzzy-based stabilizers are more efficient because they cope with oscillations at different operating points. The proposed controller adopts a dynamic inversion approach. Since feedback linearization is practically imperfect, components that ensure robust and adaptive performance are included in the control law to compensate for modelling errors and achieve acceptable tracking errors. Two fuzzy systems are implemented. The first system models the nominal values of the system’s nonlinearities. The second system is an adaptive one that compensates for modelling errors. A feedback linearization-based control law is implemented using the identified model. The gains of the controller are tuned via a particle swarm optimization routine to ensure system stability and minimum sum of the squares of the speed deviations. A bench-mark problem of a 4-machine 2-area power system is used to demonstrate the performance of the proposed controller and to show its superiority over other conventional stabilizers used in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号