首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
CD8+ cytotoxic T lymphocytes (CTLs) isolated from the central nervous system (CNS) of C57BI/6 mice acutely infected with mouse hepatitis virus, strain JHM (MHV-JHM), and analyzed in a direct ex vivo cytotoxicity assay recognize two epitopes (H-2Db- and H-2Kb-restricted encompassing amino acids 510-518 and 598-605, respectively) within the surface (S) glycoprotein. In contrast, CD8+ T cells isolated from the spleens of mice inoculated intraperitoneally with MHV-JHM and restimulated in vitro only respond to the H-2Db-restricted epitope. In this report, the preferential recognition of the H-2Db-restricted epitope is confirmed using splenocytes stimulated in vitro with either MHV-JHM-infected MC57 cells or with a cell line expressing the S protein and analyzed in secondary CTL assays. To determine whether these results represent a difference in epitope recognition between the spleen and CNS, secondary CTL assays were performed using spleen cells coated with peptides encompassing the CTL epitopes as stimulators. Under these conditions, both epitopes sensitized cells for lysis by spleen-derived CTLs, suggesting that both epitopes were recognized by splenic CD8+ T cells after infection in vivo. Furthermore, limiting dilution analysis indicated that the precursor frequency of splenic CD8+ T cells specific for both the H-2Kb- and H-2Db-restricted epitopes were not significantly different. Thus, the results suggest that in vitro stimulation of splenocytes specific for the H-2Kb-restricted epitope is inefficient after endogenous processing but that this inefficiency can be corrected if peptide is provided exogenously at sufficiently high concentrations. As a consequence, the results also show that cells responsive to both of the previously identified CNS-derived CD8+ T cell epitopes are present in the infected spleen at nearly the same frequency.  相似文献   

2.
Cytotoxic T lymphocytes (CTLs) lyse virally infected cells that display viral peptide epitopes in association with major histocompatibility complex (MHC) class I molecules on the cell surface. However, despite a strong CTL response directed against viral epitopes, untreated people infected with the human immunodeficiency virus (HIV-1) develop AIDS. To resolve this enigma, we have examined the ability of CTLs to recognize and kill infected primary T lymphocytes. We found that CTLs inefficiently lysed primary cells infected with HIV-1 if the viral nef gene product was expressed. Resistance of infected cells to CTL killing correlated with nef-mediated downregulation of MHC class I and could be overcome by adding an excess of the relevant HIV-1 epitope as soluble peptide. Thus, Nef protected infected cells by reducing the epitope density on their surface. This effect of nef may allow evasion of CTL lysis by HIV-1-infected cells.  相似文献   

3.
Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination   总被引:2,自引:0,他引:2  
Development of CD8 alphabeta CTL epitope-based vaccines requires an effective strategy capable of co-delivering large numbers of CTL epitopes. Here we describe a DNA plasmid encoding a polyepitope or "polytope" protein, which contained multiple contiguous minimal murine CTL epitopes. Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTL were demonstrated in recombinant vaccinia virus, influenza virus, and tumor challenge models. CTL responses generated by polytope DNA plasmid vaccination lasted for 1 yr, could be enhanced by co-delivering a gene for granulocyte-macrophage CSF, and appeared to be induced in the absence of CD4 T cell-mediated help. The ability to deliver large numbers of CTL epitopes using relatively small polytope constructs and DNA vaccination technology should find application in the design of human epitope-based CTL vaccines, in particular in vaccines against EBV, HIV, and certain cancers.  相似文献   

4.
The intramuscular inoculation of Moloney murine sarcoma/leukemia (M-MSV/M-MuLV) retroviral complex gives rise to sarcomas that undergo spontaneous regression due to the induction of a strong immune reaction mediated primarily by cytotoxic T lymphocytes (CTL). We used a DNA-based vaccination approach to dissect the CTL response against the Gag and Env proteins of M-MSV/M-MuLV in C57BL/6 (B6) mice and to evaluate whether plasmid DNA-immunized mice would be protected against a subsequent challenge with syngeneic tumor cells expressing the viral antigens. Intramuscular DNA vaccination induced CTL against both Gag and Env proteins. A detailed analysis of epitopes recognized by CTL generated in mice inoculated with the whole virus and with the Gag-expressing plasmid confirmed the presence of an immunodominant peptide in the leader sequence of Gag protein (Gag85-93, CCLCLTVFL) that is identical to that described in B6 mice immunized with Friend MuLV-induced leukemia cells. Moreover, CTL generated by immunization with the Env-encoding plasmid recognized a subdominant Env peptide (Env189-196, SSWDFITV), originally described in the B6.CH-2(bm13) mutant strain. B6 mice immunized with the Gag-expressing plasmid were fully protected against a lethal tumor challenge with M-MuLV-transformed MBL-2 leukemia cells, while vaccination with the Env-expressing plasmid resulted in rejection of the tumor in 44% of the mice and in increased survival of an additional 17% of the animals. Taken together, these results indicate the existence of a hierarchy in the capacity of different structural viral proteins to induce a protective immune response against retrovirus-induced tumors.  相似文献   

5.
6.
African swine fever virus (ASFV) specific, cytotoxic T lymphocyte (CTL) activity has been studied in a protection model in which SLA inbred miniature swine are experimentally inoculated with a naturally occurring, non-fatal ASFV isolate (NHV). Peripheral blood mononuclear cells (PBMC) from such infected swine show significant activity in CTL assays, using cultured ASFV-infected porcine blood derived macrophages as target cells. This CTL activity is elicited from PBMC by in vitro restimulation of effector cells with low doses (multiplicity of infection = 0.1) of the homologous virus isolate for 48 to 72 h. For SLAc/c effectors, this CTL activity appears to be SLA class I restricted because (1) blocking target cell antigens with monoclonal antibodies (mAb) against SLA class I antigens causes a major reduction in CTL activity; (2) there is preferential lysis of SLA class I matched, ASFV infected targets; and (3) depletion of effector cells with CD8 specific mAb and complement causes a reduction in CTL activity. The CTL activity is ASFV specific for all pigs tested in that infected macrophages are preferentially lysed as compared to normal (non-infected) cultured macrophages or macrophages infected with hog cholera virus (HCV). Lysis of macrophages infected with different ASFV isolates revealed that there is marked lysis of macrophages infected with the virulent L60 isolate but less lysis of macrophages infected with the DR-II and Tengani isolates. In summary, our data show that ASFV specific CTL activity is triggered in swine infected with the NHV ASFV isolate.  相似文献   

7.
The vast majority of in vitro experiments testing the cytotoxic T lymphocytes (CTL) activity in HIV infection has been performed with target cells consisting of autologous EBV-transformed B lymphoblastoid cell lines (B-LCLs) expressing Human immunodeficiency virus type I (HIV-1) proteins. However data concerning the lysis of primary CD4+ T lymphocytes expressing HIV-1 antigens by CTLs is still lacking. To study the CTL activity against such primary targets, we used a system involving PBMCs of an HIV+ asymptomatic patient (PT) as effector cells and the CD4+ lymphocytes or B-LCLs of his healthy HLA-identical twin brother (HTW) as target cells. These syngeneic targets were either infected with recombinant vaccinia virus containing HIV-1 gag gene (gag-vac), or coated with HIV-1 gag peptides. We demonstrate in this study that PT CTLs (which were CD3+, CD4-, CD8+, TCRalphabeta+, TCRgammadelta-, CD56-) specifically lysed both types of syngeneic target cells expressing gag-vac; however, CD4+ T cells expressing HIV gag proteins were lysed less efficiently than B-LCLs expressing the same HIV epitopes. On the other hand, no specific lysis was detected when the target cells were uninfected or infected by wild-type vaccinia virus.  相似文献   

8.
Plasmid DNA vectors have been constructed with minigenes encoding a single cytotoxic T lymphocyte (CTL) epitope from either the M2 protein of respiratory syncytial virus (RSV) or from the nucleoprotein of measles virus (MV) with or without a signal sequence (also called secretory or leader sequence). Following intradermal immunization, plasmids in which the CTL epitopes were expressed in-frame with the signal sequence were more effective at inducing peptide- and virus-specific CTL responses than plasmids expressing CTL epitopes without the signal sequence. This immunization resulted in protection against MV-induced encephalitis and a significant reduction in viral load following RSV challenge. The reduction of viral load following RSV challenge was abrogated by prior injection with anti-IFN-gamma antibodies. These results highlight the ability of epitope-based DNA immunization to induce protective immune responses to well-defined epitopes and indicate the potential of this approach for the development of vaccines against infectious diseases.  相似文献   

9.
The humoral response to synthetic peptide vaccines against Semliki Forest virus (SFV) in H-2d BALB/c mice was investigated with the enzyme linked immunosorbent assay and the pepscan technique. The peptide vaccines consisted of amino acid sequences 240-255 (B) and 137-151 (T) of the E2 membrane protein of SFV colinearly synthesized in either orientation T-B or B-T. Sequence B contains an epitope inducing humoral immunity to lethal SFV infection and sequence T contains a H-2d restricted T-helper cell epitope. With sera from mice immunized subcutaneously with peptide T-B, and Quil A as adjuvant, two immunodominant B-cell epitopes were identified, FVPRAD, at position 240-246 and PHYGKEI, at position 145-151. However, with peptide B-T and Quil A as adjuvant for immunization the epitope PHYGKEI was clearly immunodominant, but antibodies elicited against this epitope were not reactive with SFV-infected L cells in contrast to the antibodies elicited by epitope FVPRAD. An additional epitope EPARKGKVH, at position 247-255, was identified with sera from mice immunized subcutaneously with either peptide T-B or B-T and Montanide ISA 740 as an adjuvant. Monoclonal antibodies selected for reactivity with SFV-infected L cells did bind also to epitope FVPRAD. Interestingly, this epitope could induce antibodies cross-reactive with a synthetic peptide derived from macrophage migration inhibitory factor that shares amino acid residues VPRA at position 9-12 with the protective B-cell epitope FVPRAD. The present study shows clearly that the fine specificity of the humoral response against peptide vaccines is differentially influenced by both adjuvant and epitope polarity which may affect vaccine efficacy. Further, the study reminds us that potentially autoimmune antibodies could be induced by vaccines.  相似文献   

10.
DNA immunization can induce cytotoxic T lymphocytes (CTL), antibodies, and protection against microbial challenge. The underlying mechanisms remain obscure and must be understood to permit rational manipulation and optimization of the technique. We set out to enhance the intracellular degradation of a viral antigen, with the intent of improving antigen entry into, and presentation by, the class I major histocompatibility complex pathway. We achieved this goal by cotranslational ubiquitination of a plasmid-encoded viral antigen, lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP). We show that native NP is very stable in cell culture, while the ubiquitinated product is so rapidly degraded that it is barely detectable. This rapid degradation leads to more efficient sensitization of target cells in an in vitro cytotoxicity assay, consistent with enhanced antigen presentation, and both degradation and target cell recognition are blocked by a proteasome inhibitor. We have used the plasmid for in vivo studies and find that, remarkably, ubiquitination leads to a complete abrogation of antibody responses, presumably because the encoded protein is so rapidly and completely degraded that insufficient antigen remains to interact appropriately with B cells. In contrast, in vivo CTL induction is improved by ubiquitination of NP. That CTL are induced at all by this rapidly degraded protein may shed light on the mechanism by which CTL are induced by DNA immunization; it has been suggested that CTL induction following intramuscular DNA injection results not from antigen presentation by cells taking up and expressing the DNA but rather from uptake of soluble protein by specialized antigen-presenting cells (APC). It appears to us unlikely that the ubiquitinated protein could function in this manner, since it is so rapidly degraded in vitro and fails to induce antibodies in vivo. Finally, the ubiquitinated protein confers markedly enhanced protection against LCMV challenge. Mice immunized with a plasmid encoding NP show approximately 100-fold reductions in virus titers compared to controls, while mice immunized with a plasmid encoding the ubiquitinated NP show reductions in virus load of at least 5 x 10(4)- to 5 x 10(5)-fold. This is by far the most effective DNA vaccine that we have yet designed. Ubiquitination therefore may improve DNA immunization, but caution is warranted, since immunity to many microbes depends on induction of good humoral immunity, and we show here that this may be prevented by ubiquitination of the encoded protein.  相似文献   

11.
Vaccination of mice with plasmid DNA carrying the gene for the major secreted mycobacterial antigen 85A (Ag85A) from Mycobacterium tuberculosis is a powerful technique for generating robust specific Thl helper T-cell responses, CD8+-mediated cytotoxicity, and protection against M. tuberculosis challenge (K. Huygen et al., Nat. Med. 2:893-898, 1996). We have now analyzed in more detail the antigen-specific immune CD4+- and CD8+-T-cell responses induced in BALB/c mice vaccinated with Ag85A DNA and have compared these responses to those generated by intravenous infection with M. tuberculosis. T-cell-epitope mapping, as measured by interleukin-2 and gamma interferon secretion from splenic T cells restimulated in vitro with synthetic 20-mer peptides spanning the complete mature sequence of Ag85A, demonstrated that DNA vaccination stimulated a stronger and broader T-cell response than did M. tuberculosis infection. Moreover, elevated cytotoxic T lymphocyte (CTL) activity against Ag85A-transfected and peptide-pulsed P815 target cells could be generated exclusively by vaccination with plasmid DNA, not following M. tuberculosis infection. By using DNA vaccination, three Ag85A CTL epitopes with predicted major histocompatibility complex class I binding motifs were defined. One of them was previously reported as a dominant, promiscuously recognized T-cell epitope in healthy humans with primary infections. These data strengthen the potential of DNA vaccination with respect to inducing antituberculous immunity in humans.  相似文献   

12.
In 1993 a number of cases of unexplained adult respiratory syndrome occurred in the southwestern United States. The illness was characterized by a prodrome of fever, myalgia, and other symptoms followed by the rapid onset of a capillary leak syndrome with hemoconcentration, thrombocytopenia, and pulmonary edema. Viral RNA sequences in the lungs identified a new member of the hantavirus genus, Sin Nombre virus (SNV), unique to North America. Pulmonary endothelial cells were heavily infected but were not necrotic. We speculated that this capillary leak syndrome was initiated by immune responses to the SNV-infected pulmonary endothelial cells. We isolated a CD8+ cytotoxic T lymphocyte (CTL) clone directly from the blood of a patient with the acute hantavirus pulmonary syndrome (HPS) which recognizes a SNV specific epitope on the virus nucleocapsid protein (aa 234-242) that is restricted by HLA C7 and produces IFN gamma but not IL-4. We identified a second CD8+ CTL epitope located within another site aa 131-139 on the nucleocapsid protein, which is HLA B35 restricted, and a CD4+ CTL epitope located on a third site on nucleocapsid protein aa 372-380 using lymphocytes obtained during HPS from another patient that were stimulated in vitro. Hantavirus specific CD8+ and CD4+ CTL may contribute to the immunopathology and capillary leak syndrome observed in the HPS.  相似文献   

13.
Immunization of mice with tumors genetically engineered to express the B7 costimulatory molecules amplifies the antitumor immune response mediated by CD8+ cytolytic T lymphocytes (CTL). In this report, we examined the effect of B7-CD28 costimulation on the hierarchy of tumor epitopes. Using a combination of affinity chromatography/reversed-phase high performance liquid chromatography and CTL cloning, we show that major histocompatibility complex (MHC) class I molecules from EL4 lymphoma cells can present at least six distinct CTL epitopes presented by MHC class I molecules. Nevertheless, mice immunized with wild-type B7-negative EL4 cells develop CTL only to one immunodominant epitope. In contrast, immunization with B7-transduced EL4 cells led to not only the amplification of the CTL response to this immunodominant epitope, but also to the recognition of five otherwise silent subdominant epitopes. The adoptive transfer of a CTL clone against such a subdominant epitope cured mice bearing EL4 lymphoma growing as an ascites tumor. The fact that CTL response can be spread to normally silent epitopes as a result of B7-CD28 costimulation suggests a novel approach to manipulate the hierarchy of CTL epitopes and offers an opportunity to explore novel targets for T cell-mediated cancer therapy.  相似文献   

14.
Heat shock proteins (hsp's) isolated from murine cancer cells can elicit protective immunity and specific cytotoxic T lymphocytes (CTLs) by channeling tumor-derived peptides bound to hsp's to the major histocompatibility class I antigen presentation pathway. Here we have investigated if hsp70 can be used in a novel peptide vaccine for the induction of protective antiviral immunity and memory CTLs. A CTL epitope from the well-defined lymphocytic choriomeningitis virus (LCMV) system was mixed with recombinant hsp70 in vitro under conditions that optimize peptide binding to hsp70. Mice were immunized with the hsp70-peptide mixture and challenged with LCMV. Virus titers were reduced 10-100-fold in these mice compared to control mice. Immunization with the hsp70-peptide mixture resulted in the development of CTL memory cells that could be reactivated during LCMV infection, and that in a 51Cr-release assay could lyse cells pulsed with the same peptide, but not cells pulsed with another LCMV peptide. These results show that hsp70 can be used with CTL epitopes to induce efficient protective antiviral immunity and the generation of peptide-specific CTLs. The results also demonstrate the usefulness of hsp70 as an alternative to adjuvants and DNA vectors for the delivery of CTL epitopes to antigen-presenting cells.  相似文献   

15.
CD8(+) T cells have been implicated as critical effector cells in protective immunity against malaria parasites developing within hepatocytes. A vaccine that protects against malaria by inducing CD8(+) T cells will probably have to include multiple epitopes on the same protein or different proteins, because of parasite polymorphism and genetic restriction of T-cell responses. To determine if CD8(+) T-cell responses against multiple P. falciparum proteins can be induced in primates by immunization with plasmid DNA, rhesus monkeys were immunized intramuscularly with a mixture of DNA plasmids encoding four P. falciparum proteins or with individual plasmids. All six monkeys immunized with PfCSP DNA, seven of nine immunized with PfSSP2 DNA, and five of six immunized with PfExp-1 or PfLSA-1 DNA had detectable antigen-specific cytotoxic T lymphocytes (CTL) after in vitro restimulation of peripheral blood mononuclear cells. CTL activity was genetically restricted and dependent on CD8(+) T cells. By providing the first evidence for primates that immunization with a mixture of DNA plasmids induces CD8(+) T-cell responses against all the components of the mixture, these studies provide the foundation for multigene immunization of humans.  相似文献   

16.
This study identifies instability of MHC class I/peptide complexes and intermolecular competition for MHC class I presentation as factors responsible for the subdominance of cytotoxic T lymphocyte (CTL) epitopes. This evidence is based on the characterization of a new CTL epitope derived from the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV). This epitope, peptide GP117-125 (GP117) is presented to T cells by the mouse MHC class I molecule, H-2Db. In short-term experiments induction of GP117-specific CTL by vaccination rendered C57BL/6 mice only partially resistant to infection with wild-type LCMV (LCMV-WE) but completely resistant to challenge with a previously described LCMV variant. The variant virus, LCMV-8.7B23, bears point mutations within both known LCMV-GP, H-2 Db-restricted epitopes GP33-41 (GP33) and GP276-286 (GP276) resulting in a valine to leucine change at position 35 in peptide GP33 (V35L) and an asparagine to serine change at position 280 in peptide GP276 (N280S). Although variant peptide GP33/V35L stimulates a weak CTL response, GP276/N280S does not. Elution of peptide GP117 from both LCMV-WE- and LCMV-8.7B23-infected cells revealed that the difference in the capacity of GP117-specific CTL to protect against LCMV-WE and the virus variant LCMV-8.7B23 was due to differences in the level of GP117 presentation on the surface of both types of cells. Thus, it appears that the protective capacity of CTL specific for the subdominant epitope GP117 is influenced by the extent of presentation of other immunodominant peptide epitopes present within infected cells.  相似文献   

17.
This study was designed to test whether cytotoxic T cell (CTL) responses to DNA vaccination are dependent upon MHC class II-restricted priming of CD4+ T cells. Because DNA vaccination may directly transfect dendritic cells, and dendritic cells may be capable of directly stimulating CD8+ T cell responses, such priming might be unnecessary. To test this hypothesis, C57BL/6 mice were immunized intramuscularly or intradermally with DNA encoding either whole OVA, a class I (Kb)-restricted peptide epitope of OVA (amino acids 257-264, SIINFEKL), or this class I-restricted epitope plus the adjacent class II (I-Ab)-restricted epitope of OVA (amino acids 265-280, TEWTSSNVMEERKIKV). Very low to negligible CTL responses were observed in mice vaccinated with the SIINFEKL construct, whereas mice vaccinated with the SIINFEKLTEWTSSNVMEERKIKV or with the complete OVA construct made equally robust CTL responses. These responses were sensitive to blocking by anti-CD8 mAb and were shown to be SIINFEKL-specific by using SIINFEKL peptide-pulsed EL-4 cells as targets. To ensure that the generation of these CTL responses was indeed dependent upon CD4+ T cell help, mice were depleted of either CD4+ or CD8+ cells before immunization. Depletion of CD4+ cells completely abrogated the CTL response to OVA DNA, as did depletion of CD8+ cells. Thus, we conclude that the CTL response to both intramuscular and intradermal DNA vaccination is highly dependent upon the generation of CD4+ T cell help via a class II MHC-dependent pathway. These results will be relevant for the construction of minimal-epitope vaccines for DNA immunization.  相似文献   

18.
Infection with virus variants exhibiting changes in the peptide sequences defining immunodominant determinants that abolish recognition by antiviral cytotoxic T cells (CTL) presents a considerable challenge to the antiviral T-cell immune system and may enable some viruses to persist in hosts. The potential importance of such variants with respect to mechanisms of viral persistence and disease pathogenesis was assessed by infecting adult mice with variants of lymphocytic choriomeningitis virus (LCMV) strain WE. These variants were selected in vivo or in vitro for resistance to lysis by CD8+ H-2b-restricted antiviral CTL. The majority of anti-LCMV CTL in infected H-2b mice recognize epitopes defined by residues 32 to 42 and 275 to 289 (epitopes 32-42 and 275-289) of the LCMV glycoprotein or 397 to 407 of the viral nucleoprotein. The 8.7 variant exhibits a change in the epitope 32-42 (Val-35-->Leu), and variant CL1.2 exhibits a change in the epitope 275-289 (Asn-280-->Asp) of the wild-type LCMV-WE. The double-mutated 8.7-B23 variant had the variation of 8.7 and an additional change located in the epitope 275-289 (Asn-280-->Ser). The 8.7 variant peptide with unchanged anchor positions bound efficiently to H-2Db and H-2Kb molecules but induced only a very weak CTL response. CTL epitope 275-289 of CL1.2 and 8.7-B23 altered at predicted anchor residues were unable to bind Db molecules and were also not recognized by antiviral CTL. Infection of C57BL/6 mice (H-2b) with the variants exhibiting mutations of one of the CTL epitopes, i.e., 8.7 or CL1.2, induced CTL responses specific for the unmutated epitopes comparable with those induced by infection with WE, and these responses were sufficient to eliminate virus from the host. In contrast, infection with the double-mutated variant 8.7-B23 induced CTL activity that was reduced by a factor of about 50-fold compared with wild-type LCMV. Consequently, high doses (10(7) PFU intravenously) of this virus were eliminated slowly and only by about day 100 after infection. 8.7-B23 failed to cause lethal lymphocytic choriomeningitis after intracerebral infection with a dose of > 10(4) PFU in C57BL/6 mice (but not in mice of nonselecting H-2d haplotype); with the other variants or wild-type LCMV, doses greater than 10(6) to 10(7) PFU were necessary to avoid lethal choriomeningitis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
H-2d mice generated a major histocompatibility complex (MHC) class I (Ld)-restricted T-cell response of defined restriction and epitope specificity to the hepatitis B virus small surface antigen (HBsAg). Here, we compare different vaccination techniques that prime in vivo class I-restricted, murine cytotoxic T lymphocyte (CTL) precursors and specific serum antibody responses. CTL were efficiently primed by the injection of low doses of recombinant native HBsAg particles without adjuvants, by the injection of low doses of denatured HBsAg monomers without adjuvants, by infection with recombinant vaccinia virus carrying a HBsAg-encoding gene, or by intramuscular transfer of plasmid DNA encoding HBsAg under appropriate promoter control. The observation that the injection of 100 ng to 1 microgram of native HBsAg "virus-like particles' (VLP) without adjuvants is an exogenous antigen preparation that efficiently primes class I-restricted CTL responses was unexpected. It reveals a novel aspect of the immunogenicity of VLP for T cells.  相似文献   

20.
The effect of patient preimmunization virus sequences on CTL responses during gp160 immunization were studied. Ten HLA-A2+, HIV+ asymptomatic patients with CD4+ T cells >500/mm3 were given two courses of HIV-1 MN rgp160 vaccine over a 2-year period. Envelope epitope-specific CTL responses, using PBMCs, were measured against peptide-coated autologous B lymphoblastoid cell lines. Optimum CTL epitopes were determined by HLA-A2-binding affinity of 9- to 10-mer peptides containing the HLA-A2.1-binding motif. Ten of the high- or intermediate-binding peptides were conserved among >50% of reported clade B HIV strains. These peptide-specific CTL activities and the patient virus sequences in peptide-coding regions were monitored. Six patients showed envelope peptide-specific CTL responses, which correlated with the presence of whole envelope antigen-specific CTL responses. Five of these patients, who showed responses to epitopes in the gp41 region (aa 814-824), had preimmunization virus similar to the vaccine sequence in this region. Three patients who did not show these epitope-specific responses had initially different sequences in the HIV gene encoding that region. The epitope-specific CTL responses appear to reflect recall responses, as only patients infected with virus containing the vaccine sequence developed them and they could be recalled with a second set of vaccine injections. This appears to be reminiscent of the concept of T cell "original antigenic sin." This vaccine was also immunogenic as measured by gp160-specific lymphocyte-proliferative responses. However, increased immune responses did not impact the HIV load or CTL epitope sequences during therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号