首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical oxidation of a synthetic wastewater containing the model dyes alizarin red (an anthraquinone) and Eriochrome black T (an azoic compound) has been studied on a boron‐doped diamond electrode (BDD) by both cyclic voltammetry and bulk electrolysis. The influence of the current density and dye concentration were investigated. The results obtained show that complete chemical oxygen demand (COD) and colour removal was obtained for both wastewaters. However, the nature of the pollutant, and specially the presence of functional groups (such as the azoic group) seems to strongly influence the performance and efficiency of the electrochemical process. The electro‐oxidation of alizarin red behaves as a mass‐transfer‐controlled process. In such a system, an increase in the current density leads to a decrease in the current efficiency. This can be explained by direct or hydroxyl radical mediated oxidation. The contrary tendency has been observed in Eriochrome black T electro‐oxidation. In this case, higher efficiencies were obtained working at high current densities. This may indicate that the mediated oxidation by electrogenerated reagent (such as peroxodisulphate) is the main oxidation mechanism involved in Eriochrome black T treatment. These compounds have a longer average lifetime than hydroxyl radicals, and it allows the reaction to be extended to the whole wastewater volume. This study has shown the suitability of the electrochemical process for completely removing the COD and total organic carbon and effectively decolourising of wastewaters containing synthetic dyes. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Pharmaceutical residues in the aquatic environment represent an emerging environmental problem, because many pharmaceuticals are refractory towards conventional waste water treatment. This study focussed on the oxidation of the sulfonamide antibiotic sulfamethoxazole (SMX) at a boron-doped diamond anode, at which reactive hydroxyl radicals are formed. Electrochemical oxidation led to mineralization with high current efficiency, but without the formation of known toxic products of partial oxidation. A “mixed” kinetic order with respect to substrate concentration was observed; the kinetics could be shifted in the direction of either diffusion control (first order in SMX) or current control (zero order in SMX) by adjusting the substrate concentration and current density. Alternatively, the electrooxidation could be described by a model, applicable to a wide range of reaction conditions, in which the kinetic orders with respect to current and initial substrate concentration were approximately 0.4 and 0.5, respectively.  相似文献   

3.
The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO2 and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency.  相似文献   

4.
Dorin Bejan 《Electrochimica acta》2009,54(23):5548-9061
Ebonex® is a conductive and corrosion-resistant ceramic with the approximate composition Ti4O7. Anodic and/or cathodic polarization of a pair of Ebonex electrodes changed their surface composition, as shown by the development of a potential difference between them. In consequence, the activity of an Ebonex anode with respect to oxidation of an organic substrate depends on its past history. The anodic oxidation of p-nitrosodimethylaniline, which has been used as a model compound for the detection and quantitation of hydroxyl radicals, was studied in order to determine whether hydroxyl radicals are produced upon anodic polarization of Ebonex. The results were ambiguous, because direct oxidation of this substrate and oxidation of water to hydroxyl radicals occur at similar potentials. p-Benzoquinone (BQ) was found to be a more satisfactory mechanistic probe because it is resistant to direct oxidation. The rates of both disappearance and overall mineralization of BQ at Ebonex were intermediate between the corresponding rates at boron-doped diamond (BDD) and Ti/IrO2-Ta2O5 anodes, which promote one-electron and two-electron oxidations respectively. However, it is not yet clear whether mineralization is initiated by hydroxyl radicals formed in lower yield than at ‘active’ materials such as BDD, or whether oxidation involves less reactive intermediates such as HO2 radicals.  相似文献   

5.
This work is focused on the study of the role of several conductive-diamond characteristics (boron doping, sp3/sp2 ratio, diamond-layer thickness) on the performance of the electrolysis of enrofloxacin (as model complex-organic pollutant). Commercial lots provided by an important conductive-diamond manufacturing company have been used. Results show that enrofloxacin electrooxidation is strongly influenced by the conductive-diamond characteristics; particularly the ratio diamond/graphite carbon was found one of the most significant parameters in this process: the higher the content in diamond-carbon the greater the TOC and COD decays in the bulk electrolyses. These results have been interpreted in terms of the oxidation mechanism involved. High graphite content favours direct oxidation of the pollutant on the electrode surface and leads to the formation of many intermediates. On contrary, high diamond content seems to favour the complete oxidation of the organic to carbon dioxide, thanks to the contribution of the oxidants (hydroxyl radicals and electrogenerated reagents) present in a region close to the electrode surface. Likewise, the oxidation rate seems to be improved with increase in the concentration of boron and decrease in the thickness of the substrate layer.  相似文献   

6.
This research investigated oxidation of perfluorobutane sulfonate (PFBS) at a boron-doped diamond (BDD) film anode. PFBS oxidation produced carbon dioxide, sulfate, fluoride, and trace amounts of trifluoroacetic acid (TFA). Rate constants for PFBS oxidation as a function of current density and temperature were measured using a rotating disk electrode (RDE) reactor. Reaction rates in the RDE reactor were zeroth order with respect to PFBS concentration, which is indicative of a reaction limited by the availability of reactive sites. The apparent electron transfer coefficient and apparent activation energy were used to evaluate the rate-limiting step for PFBS oxidation. Density functional simulations were used to calculate the reaction energies and activation barriers for PFBS oxidation by hydroxyl radicals and by direct electron transfer. Simulation results indicated that the experiments were performed at sufficiently high overpotentials that the rate-limiting step was an activationless direct electron transfer reaction.  相似文献   

7.
The electrochemical incineration of oxalic acid (OA) at boron doped diamond (BDD) anodes was investigated both theoretically and experimentally in order to find the influence of the operative parameters on the performances of the process. Polarization curves and chronoamperometric measurements indicate the probable occurrence of a direct electrochemical oxidation of OA at the surface of the BDD anode at low pH and of a hydroxyl radical-mediated reaction at high pH. When incineration electrolyses are performed at low pH with potentiostatic alimentation, a dramatic influence of the potential is observed. In amperostatic incineration, high CE are obtained when most part of the process was under charge transfer controlled kinetics, i.e., when low current densities and high flow rates are imposed. Under these conditions no significant effect of current densities or flow rates is observed. The results obtained at low pH are in good agreement with the previsions of a model based on the assumption that, under adopted experimental conditions, the performances of the process are mainly determined by the competition between the direct oxidation of oxalic acid and the water discharge. The effect of the pH and of the supporting electrolyte was further investigated.  相似文献   

8.
Anodic oxidation of mecoprop herbicide at lead dioxide   总被引:1,自引:0,他引:1  
The electrochemical oxidation of an aqueous solution containing mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) has been studied at PbO2 anodes by cyclic voltammetry and bulk electrolysis. The influence of current density, hydrodynamic conditions, temperature and pH on the degradation rate and current efficiency is reported. The results obtained show that the use of PbO2 leads to total mineralization of mecoprop due to the production of oxidant hydroxyl radical electrogenerated from water discharge. The current efficiency for the electro-oxidation of mecoprop is enhanced by low current density, high recycle flow-rates and high temperature. In contrast, the pH effect was not significant. It has also been observed that mecoprop decay kinetics follows a pseudo-first-order reaction and the rate constant increases with rising current density.  相似文献   

9.
Generation of hydroxyl radicals and ozone in a low ionic strength influent (0.001 M Na2SO4) treated in a continuous flow electrochemical (EC) reactor equipped with a cobalt-promoted lead dioxide anode was examined using p-chlorobenzoic acid (pCBA) and indigotrisulfonate (ITS) probes. EC generation of hydroxyl radicals via the oxidation of water was determined to precede that of ozone. OH· current yields were affected virtually solely by the current density, with almost negligible effects of variations of pH and carbonate concentrations. Absolute values of the current yields of EC generated OH· radicals were close to 1.0% for current densities > 30 mA/cm2. The EC generation of ozone was suppressed in the presence of organic species, primarily due to the interception of OH· radicals that react with oxygen to form ozone. Apparent kinetic constants of major reactions associated with the EC generation of ozone were determined based on a steady-state model of an EC-controlled continuous flow reactor.  相似文献   

10.
Electrochemical waste water treatment: Electrooxidation of acetaminophen   总被引:2,自引:0,他引:2  
Oxidation of acetaminophen at boron-doped diamond (BDD) and at Ti/SnO2 anodes in a plug-flow divided electrochemical reactor led to electrochemical combustion, whereas at Ti/IrO2 benzoquinone was the exclusive product except at very long electrolysis times. The difference is explicable in terms of the different mechanisms of oxidation: direct oxidation at the anode for Ti/IrO2 vs. indirect oxidation involving electrogenerated hydroxyl radicals at BDD and Ti/SnO2. At BDD, at which the efficiency of degradation of acetaminophen was greatest, the rate of electrolysis at constant concentration was linearly dependent on the current, and at constant current linearly dependent on the concentration. Current efficiencies for mineralization up to 26% were achieved without optimization of the cell design.  相似文献   

11.
Different UVA radiation and advanced oxidation systems, most of them involving ozone, have been applied to remove mixtures of three contaminants of pharmaceutical type: diclofenac (DCF), sulfamethoxazole (SMT) and caffeine (CFF), both in ultrapure and secondary treated wastewater. The influence of the water matrix has been studied in terms of individual compound concentration and TOC removal. Also, biodegradability of the treated wastewater before and after the advanced oxidation process, as BOD/COD ratio, the partial oxidation yield, the increment of average state of carbon oxidation and ozone consumption have been determined. For mgL?1 to 100 μgL?1 concentrations and regardless of the ozone process and water type, DCF and SMT are removed in less than 10 min mainly by direct reaction with ozone, especially in the case of DCF. CFF, on the contrary, is mainly removed through hydroxyl radicals. For lower concentration (≤100 μgL?1), DCF still disappears by direct ozonation, CFF by hydroxyl radicals oxidation and SMT through both direct ozonation and hydroxyl radical oxidation. Once DCF and SMT have disappeared, TOC is removed by reacting with hydroxyl radicals, regardless of the water matrix. Photocatalytic ozonation allows the highest TOC degradation rate, partial oxidation yield, increment of average state of carbon oxidation and biodegradability together to the lowest ozone consumption per mg TOC eliminated.  相似文献   

12.
The electrochemical treatment of wastes containing several chlorophenols (4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol) using boron-doped diamond electrodes is described. Both direct and indirect processes are involved in the oxidation of the organics, indirect processes being mediated by oxidising agents (such as hypochlorite or peroxodisulphate) generated on the surface of the anode. The influence of the waste characteristics (initial concentration, pH and supporting media) is reported. The presence of reversible redox reagents, like the sulphate/peroxodisulphate redox couple, plays an important role in determining the global oxidation rate. Hypochlorite formation depends only on the organochlorinated compound and not on the presence of other reversible redox reagents in the waste. Alkaline pH favours the accumulation of carboxylic acid intermediates since, under these conditions, the oxidation rate of such compounds is low. The influence of the operating conditions (temperature and current density) is also discussed. The results show that high temperatures improve the rate of the mediated reactions and that high current density values decrease the efficiency of the direct electrochemical processes.  相似文献   

13.
Electrochemical degradation of anionic surfactants   总被引:1,自引:0,他引:1  
This study was performed to investigate the electrochemical oxidation of anionic surfactants. In particular, a synthetic solution of sodium dodecyl benzene sulfonate and a real car wash wastewater were treated by galvanostatic electrolysis using a Ti–Ru–Sn ternary oxide and a boron-doped diamond (BDD) anode. Measurements of the Chemical Oxygen Demand (COD) and the concentration of the anionic surfactants were used to follow the oxidation. Using the Ti–Ru–Sn ternary oxide anode, the complete removal of COD and sodium dodecyl benzene sulfonate was obtained only in the presence of chloride ions that act as inorganic mediators. The oxidation rate was almost independent of current density and electrolyte flow rate. In the case of BDD the mineralisation of the sodium dodecyl benzene sulfonate was achieved in all experimental conditions due to reaction with hydroxyl radicals electrogenerated on the diamond surface during electrolysis. The COD removal rate increased with increase in electrolyte flow rate, indicating that the oxidation was mass-transfer controlled. Comparison of the results of the two electrodes showed that chlorine mediated oxidation at the Ti–Ru–Sn ternary oxide anode allowed a faster COD removal of both the synthetic solution and real car wash wastewater.  相似文献   

14.
Fenton试剂·OH生成率的影响因素研究   总被引:3,自引:0,他引:3  
提高Fenton试剂在废水处理中的氧化功效,关键在于提高体系中·OH的生成率.本文采用邻二氮菲-Fe(Ⅱ)光度法间接测定·OH,研究了Fenton试剂中·OH表观生成率的主要影响因素:Fe2+的浓度、H2O2的浓度、pH值及反应时间,并结合实际应用,考察了工业废水中常见无机离子对·OH生成率的影响,从而为Fenton试剂法更好地应用于废水处理提供了技术依据.  相似文献   

15.
In this work it has been studied the electrochemical production of different oxidants with conductive-diamond anodes. This technology was found to allow the production of stable oxidants that can not be easily synthesized using other electrodes or by other more usual techniques. Thus, it has been found that monoperoxophosphoric acid, and peroxodiphosphate, peroxodisulphate and ferrate salts can be easily produced by this technology, when the right operation conditions are used. In contrast, the production of pure hypochlorite is not favoured, because this technology leads to the formation of a mixture of hypochlorite with other oxoanions of chlorine in a higher oxidation state, particularly chlorates and perchlorates, which seems to be the final product in these electrolyses. The production of perbromates salts has also been pointed, although in this case only preliminary results are shown. In every case, it has been observed two marked trends in the process efficiency as function of the current density applied. This fact can be explained in terms of the contribution of hydroxyl radicals in the oxidation mechanisms that occur on diamond surfaces. Results obtained in this work also allow explaining the influence of the electrolyte salt on the efficiency of the electrochemical oxidation of wastewaters.  相似文献   

16.
The problem at hand is the electrochemical oxidation of oxalate ion, which is accelerated by fluoride ion at a platinum anode. The hypothesis that fluoride ion traps incipient hydroxyl radicals as hydroxyfluoride radical anions was not supported by ESR experiments in which hydroxyl radicals were generated in the presence of the spin trap α-(4-pyridyl-1-oxide) N-tert-butyl-nitrone with and without the addition of fluoride ion. The electrochemical oxidation of oxalate at constant current followed current controlled kinetics both at a platinum anode, as observed previously, and at a boron-doped diamond anode, but the rate of the latter reaction was indifferent to the presence of fluoride ion. We propose that the competition of fluoride and hydroxide ions for the Pt/PtOn surface inhibits the dimerization reactions that lead to oxygen evolution; the displacement of oxygen evolution to more positive potentials overcomes the overpotential for the oxidation of oxalate at this anode. Fluoride ion has no influence on the oxidation of oxalate at BDD because oxygen evolution inherently occurs at more positive potentials at this anode.  相似文献   

17.
The electrogeneration of polymeric phosphorus compounds during the anodic oxidation of aqueous solutions of phosphites on a boron-doped diamond electrode has been studied. Although the main oxidation product is orthophosphate, the results indicate the simultaneous generation of short-chain and cyclic compounds containing two and three phosphorus atoms whose evolution has been followed by ion chromatography.The effect on the reaction yield of several operative parameters such as current density, pH, temperature and initial phosphite concentration has been investigated.Consistently with the data presented, a new process for the generation of polymeric phosphates is obtained.  相似文献   

18.
栾万利  张乃东  朱正江 《化工学报》2012,63(4):1234-1242
阳极氧化体系中引入了过硫酸盐的自动生成机制。文中主要研究了Ti/Ru-Ir氧化物涂层电极和Pt双阳极体系中过硫酸盐的生成与刚果红的降解规律。实验证明,在阳极区过硫酸盐的生成与刚果红的降解之间存在竞争关系,Ti/Ru-Ir氧化物涂层阳极有利于刚果红的降解,Pt阳极有利于过硫酸盐的生成;刚果红的降解速率与Ti/Ru-Ir氧化物涂层阳极电流密度、SO2-4浓度呈正比,与pH呈反比;过硫酸盐的产量与电流密度、SO2-4浓度、pH密切相关,其中电流密度的影响最大,只有当Pt阳极电流密度高于Ti/Ru-Ir氧化物涂层阳极电流密度200倍以上时,SO2-4才可有效转化成S2O2-8。电解体系中生成的过硫酸盐在模拟日光照射下可对有机物进一步降解。文中还研究了日光/过硫酸盐法的降解机理。  相似文献   

19.
In this paper, the electrochemical oxygen transfer reaction (EOTR) is studied on boron-doped diamond electrodes using simple C1 organic compounds (methanol and formic acid). The kinetics of both oxygen evolution (side reaction) and organics oxidation (main reaction) has been investigated using boron-doped diamond microelectrodes-array (BDD MEA). Oxygen evolution, in the high-potential region, takes place with a Tafel slope of 120 mV dec−1 and zero reaction order with respect to H+. In the presence of organics, a shift of the polarization curves to lower potentials is observed while the Tafel slopes remain close to 120 mV dec−1. A simplified model of C1 organics oxidation is proposed. Both water discharge and organics oxidation are assumed to be fast reactions. The slowest step of the studied EOTR is the anodic discharge of hydroxyl radicals to oxygen. Further in this work, electrolysis of formic acid on boron-doped diamond macroelectrode is presented. In order to achieve 100% current efficiency, electrolysis was carried out under programmed current, in which the current density was adjusted to the limiting value.  相似文献   

20.
The electrochemical oxidation of aqueous wastes polluted with benzoic and salicylic acids and phthalic anhydride on boron‐doped diamond electrodes has been studied. The complete mineralization of the organic waste has been obtained in each case regardless of the nature of the compound, composition of the solution, and current density. Different voltammetric behaviors between benzoic acid, salicylic acid, and phthalic anhydride were obtained in the voltammetric study, but no differences in the electrochemical oxidation of the three compounds seems to exist in the bulk electrolyses study. The total mineralization of the three compounds at different current densities confirms that the oxidation must occur directly on the electrode surface and/or by hydroxyl radicals generated by decomposition of water and/or by other oxidants electro‐generated from the sulfate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号