首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the coatings and substrates combine well. The main phase compositions of laser cladding coating are γ-Co, Cr23C6 and Ni2.9Cr0.7Fe0.36, while vacuum fusion sintering coating consists of Co, Cr7C3 , and Ni2.9Cr0.7Fe0.36. After thermal cycling, the minimum hot cracking width of laser cladding coating is 14 μm; moreover, laser cladding coating maintains high hardness and hot-cracking susceptibility. Those are beneficial to high temperature wear resistance of hot work dies.  相似文献   

2.
H13钢的铁基和钴基熔覆层组织与耐磨性   总被引:6,自引:4,他引:2       下载免费PDF全文
员霄  王井  朱青海  陈志凯  何冰 《焊接学报》2018,39(12):105-109
采用激光熔覆技术在AISI H13 热作模具钢表面分别制备了铁基熔覆层、钴基熔覆层. 借助金相显微镜、扫描电镜、洛氏硬度计和高温摩擦磨损试验机,对比分析了两种熔覆层的组织形貌、硬度和耐磨性. 采用马弗炉进行加热600 ℃,保温1 h,反复4 次,并测得红硬性硬度. 结果表明,基材、铁基、钴基熔覆层硬度分别为HRC 47,HRC 52,HRC 48. 基材和铁基熔覆层的红硬性硬度有所下降,而钴基熔覆层的红硬性硬度提升. 钴基熔覆层磨损失重量和摩擦系数皆最小. 基材、铁基熔覆层、钴基熔覆层的磨损机理分别是以磨粒磨损、粘着磨损以及粘着磨损和磨粒磨损为主.  相似文献   

3.
In this work, thermal stability and oxidation resistance at temperatures up to 800°C are studied for (Ti,Al)N–(8–10 at %)Ni coatings with a thickness on the order of 4 µm and a crystallite size below 20 nm, which have been prepared via ion–plasma vacuum arc deposition. The composition and structural characteristics of coatings remain stable during 1-h heating in vacuum of 10–4 Pa at temperatures of 600 and 700°C. Heating at a temperature of 800°C leads to an increase in the crystallite size and a decrease in microstrains of a ceramic phase, which is accompanied by a reduction in the hardness of the coating from 51–53 to 31–33 GPa. The coatings are heat resistant up to 800°C and characterized by cohesive failure in scribing. The adhesive strength of coatings with a substrate exceeds 85 N. Studying electrochemical behavior reveals the high efficiency of (Ti,Al)N0.87–Ni coatings in corrosion protection of cutting tools in acid and alkaline environments.  相似文献   

4.
The effects of heat treatment on the microstructure, microhardness, nanohardness and wear resistance of Tribaloy 400 coatings prepared by laser cladding on 304 stainless steel were studied in this paper. The results show that the microstructures of Tribaloy 400 laser cladding layer are cobalt matrix dendrites and eutectic structure. After the heat treatment at 1250 °C for 1 h, the eutectic structure disappears and the strip-like Laves phase is formed on the Co matrix. Meanwhile, the hardness is obviously improved. After the heat treatment at 1250 °C for 1 h and then 900 °C for 4 h, a small amount of ε-Co appears, the strip-like Laves phases become coarser and blunter, and some of the strip structures combine together to form blocky structures, and the hardness is decreased. The wear resistance of the samples at 600 °C is better than that at RT since the hardness of the Laves phase increases with the rise in temperature.  相似文献   

5.
采用高功率脉冲磁控溅射(HiPIMS)技术在不同沉积温度下制备了Al-Cr-Si-N涂层。系统研究了沉积温度对涂层结构、成分、显微形貌、力学和摩擦学性能的影响。结果表明:随着沉积温度由100℃升至350℃,涂层内部开始由非晶向纳米晶转化,300℃时出现fcc-AlN相;涂层平整性和致密性逐步改善,膜/基结合强度逐渐提高,在300℃达到最大值77 N,但温度继续升高至350℃时,严重的轰击刻蚀作用使临界载荷骤降至25 N;涂层硬度逐渐增加,在350℃达到最大值19.4GPa;涂层内应力整体呈下降趋势,由–0.8 GPa逐渐降低至–0.4 GPa左右。  相似文献   

6.
Cr涂层能够有效提高核电反应堆锆包壳管的事故容错能力,但在高温下其内部可能会萌生裂纹导致涂层开裂失效,现有Cr涂层开裂行为研究多针对常温,因此研究不同温度下Cr涂层的开裂行为对于其应用具有重要的理论和工程价值。采用多弧离子镀技术在N36锆合金包壳管外表面制备厚度为14μm左右的Cr涂层,采用WDW-100C万能试验机对涂层管分别进行室温(25℃)与高温(100、200、300、400℃)拉伸试验,并通过超景深显微镜和扫描电镜(SEM)观察涂层的裂纹表面与截面形貌,对Cr涂层在不同温度下的开裂行为与开裂机理进行研究。结果表明,随着温度升高,涂层管的屈服强度从(400±5)MPa下降到(150±5)MPa,涂层管的总体塑性变化不大;室温下裂纹萌生于涂层内部,其开裂方式为脆性沿晶断裂;100℃时涂层开裂方式不变,但表面裂纹数量减少,裂纹尖端出现钝化,由V字形转变为U字形;随着温度进一步升高,涂层的塑性变形能力提高,其表面呈流线形塑性变形;200℃及以上温度下,涂层表面无明显开裂,仅出现少量微裂纹,塑性的升高导致拉伸过程中涂层的变形量与基体存在差异,裂纹开始萌生于界面处,其断裂方式也由脆性断裂...  相似文献   

7.
《CIRP Annals》2019,68(1):297-300
Hydrogen-induced delayed fracture at cold-blanked edges of 1–1.5 GPa ultra-high strength steel sheets was investigated. The blanked edges undergo large shear deformation and tensile residual stress, and thus the risk of delayed fracture is high, especially for the 1.5 GPa sheet. The effects of residual stress, surface quality and hardness of the sheared edge on the occurrence of delayed cracking were examined. Delayed cracking was caused by press blanking, whereas no cracking occurred for laser blanking because of compressive residual stress. For the 1.5 GPa sheet, delayed cracking was prevented by heating above 250 °C and a stain above 0.005.  相似文献   

8.
In laser cladding thermal contraction of the initially liquid coating during cooling causes residual stresses and possibly cracks. Preweld or postweld heating using inductors can reduce the thermal strain difference between coating and substrate and thus reduce the resulting stress. The aim of this work is to better understand the influence of various thermometallurgical and mechanical phenomena on stress evolution and to optimize the induction-assisted laser cladding process to get crack-free coatings of hard materials at high feed rates. First, an analytical one-dimensional model is used to visualize the most important features of stress evolution for a Stellite coating on a steel substrate. For more accurate studies, laser cladding is simulated including the powder-beam interaction, the powder catchment by the melt pool, and the self-consistent calculation of temperature field and bead shape. A three-dimensional finite element model and the required equivalent heat sources are derived from the results and used for the transient thermomechanical analysis, taking into account phase transformations and the elastic-plastic material behavior with strain hardening. Results are presented for the influence of process parameters such as feed rate, heat input, and inductor size on the residual stresses at a single bead of Stellite coatings on steel.  相似文献   

9.
采用激光熔覆加液氮辅助冷却技术在S355海洋钢表面制备Al基非晶涂层,运用SEM、XRD、电化学工作站等技术分析了涂层腐蚀前后表界面形貌及物相组成,研究了液氮辅助冷却对涂层性能的影响以及涂层在5%NaCl溶液中浸泡10、20、40和80 d后的腐蚀性能。结果表明:经过液氮辅助冷却后涂层中存在少量的非晶AlFeNi相;涂层与基体形成了良好的冶金结合;表面组织细小,增强相TiC均匀弥散分布,且裂纹气孔较少。涂层表面显微硬度增加15%;残余应力与自然冷却时基本持平,均为拉应力;其耐蚀性也得到了显著提升。  相似文献   

10.
CoMoCrSi alloys, mostly known as Tribaloy® family, combine well-known outstanding properties in terms of wear and corrosion resistance as well as in terms of mechanical strength. Compared to other wear resistant alloys, their performance is due to the presence of hard Laves phases rather than intermetallic carbides. Among the Tribaloy family, the T-800 alloy offers the best performance as a result of a higher amount of primary Laves phases. However, as a consequence of the brittle nature of these hard phases, the deposited alloy may present a relatively low resistance to crack initiation and propagation, particularly in laser cladding processing where thermal stresses are significant. A reduction in the volume fraction of these hard phase may be achieved by replacing some of the Laves phase components in the alloy (Co, Mo, Si) by Ni (T-900 alloy). Alternatively, it has been suggested that the addition of Fe could also lead to a significant reduction. The Fe addition can easily be accomplished in laser cladding process by dilution of the T-800 coating with the steel substrate. In this work a comparative study of microstructure, hardness and cracking susceptibility of low and high diluted T-800 and T900 coatings deposited by laser cladding is presented. A lower cracking ratio is obtained for the T-900 coatings at the cost of a lower hardness and wear resistance. No noticeable effect on the cracking susceptibility of the T-800 is found due to dilution with the substrate. However a change in its microstructure is observed giving superior hardness and wear resistance.  相似文献   

11.
为了探究MnCo2O4尖晶石涂层作为固体氧化物燃料电池的金属连接体表面涂层的性能,使用溶胶-凝胶法制备出纯净的前驱体粉末,再使用电泳沉积方法制备出致密的MnCo2O4尖晶石涂层,利用SEM、EDS和XRD等表征手段观察分析MnCo2O4尖晶石涂层的相结构和微观组织形貌。采用“四探针法”测量MnCo2O4尖晶石涂层800℃氧化200h前后的面比电阻使用拉拔法完成不同界面粗糙度下的涂层结合强度测试,并用有限元仿真加以验证。结果显示,MnCo2O4尖晶石涂层结构均匀,致密度较好。相较于AISI430不锈钢基体来说,在800℃空气中氧化200h,抗氧化性提高了接近3倍。且中温面比电阻小于SOFC金属连接体规定的极限值。此外,基体表面粗糙度可以有效的增加涂层与基体的机械咬合作用,但同时也会导致应力集中,出现缺陷,从而降低了结合强度。  相似文献   

12.
激光熔覆原位合成TiC/Ni涂层开裂严重.从熔覆层金相组织、物相组成、残余应力、宏观形貌和断口观察等角度分析裂纹形成的原因,提出了相应的裂纹控制措施.结果表明,激光合成TiC/Ni涂层裂纹主要是由于硬脆相及残余内应力导致的脆性冷裂纹.通过增大钛粉量,Ti元素与Ni60中的M23C6相发生置换反应:M23C6+Ti→M+TiC.通过加入镍粉或优化工艺参数,可以改善涂层组织,提高塑韧性,降低残余内应力,从而降低裂纹敏感性.  相似文献   

13.
Fe-Ti-B激光熔敷层中TiB2晶须的原位合成   总被引:5,自引:0,他引:5  
王惜宝  梁勇 《金属学报》2003,39(2):193-198
为了降低激光熔敷Fe-B涂层的高度脆性,使用不同成分的B4C和Fe-Ti合金混合粉末在奥氏体不锈钢基体上进行了激光熔敷,得到了具有TiB2晶须强化的复合Fe-Ti-B涂层。该涂层在保持原来Fe-B涂层的高硬度的同时,其抗裂性能亦得到了改善。  相似文献   

14.
FeAl intermetallic compound coating was prepared by cold spraying using a mechanically alloyed Fe(Al) alloy powder followed by post-spray annealing at 950 °C. The high-temperature abrasive wear test was carried out for the FeAl coating at a temperature range from room temperature to 800 °C. The high-temperature abrasive wear of a heat-resistant stainless steel 2520 was performed for comparison. It was observed that the abrasive wear weight loss of FeAl coating was proportional to wear cycles in terms of sample revolutions at the tested temperatures. It was found that with the increase of the test temperature higher than 400 °C, the wear rate of cold-sprayed FeAl coating decreased with the increase of test temperature, while the wear rate of the heat-resistant steel increased significantly. The results indicate that the high-temperature abrasive wear resistance of the cold-sprayed FeAl intermetallic coating increased with the increase of the wear temperature in a temperature range from 400 to 800 °C. The wear resistance of cold-sprayed FeAl coating was higher than that of heat-resistant 2520 stainless steel under 800 °C by a factor of 3.  相似文献   

15.
建立了激光熔覆SiC/316L复合涂层有限元分析模型,采用超声振动热效应转化和施加动态边界条件相结合的方法对超声振动边界条件作近似处理,对超声辅助激光熔覆SiC/316L复合涂层的温度分布和残余应力进行分析,并分析了超声振幅和扫描速度对温度场和应力场的影响.结果表明,随着超声振幅增大和扫描速度减小,涂层表面温度升高;超声作用下涂层残余应力有所降低,且随着超声振幅和扫描速度增大,残余应力值先减小后增大.采用优化工艺参数进行超声熔覆试验,超声作用使涂层中各区域组织得到细化且均匀分布,有利于降低涂层中残余应力.  相似文献   

16.
针对钛合金在实际应用过程中存在硬度低、耐磨性差、高温易氧化以及生物活性低等问题,国内外学者利用陶瓷材料较高的硬度、优异的耐磨性和高温抗氧化性能的特点,以及激光熔覆技术可以实现涂层与基材的冶金结合,较高的冷却速率使涂层内部晶粒得到细化的优势,开展了钛合金表面激光熔覆陶瓷涂层的广泛研究。首先简要概括了钛合金表面激光熔覆陶瓷材料的特点,介绍了在激光熔覆过程中常见的陶瓷材料以及所具备的特殊性能。从陶瓷涂层制备方式和陶瓷材料体现的功能两个方面,综述了国内外的研究特点、现状和进展。对比分析了激光制备纯陶瓷涂层、激光制备陶瓷与金属合金复合涂层、激光原位合成陶瓷复合涂层、激光制备陶瓷梯度涂层的优缺点。介绍了在钛合金表面激光熔覆耐磨涂层、高温抗氧化涂层、耐蚀涂层和生物涂层的进展,分析了陶瓷材料在提高相关性能时所发挥的作用。最后针对钛合金表面激光熔覆陶瓷材料存在的问题,对钛合金表面激光熔覆陶瓷涂层未来的发展趋势进行了讨论与展望。  相似文献   

17.
Ni-SiC composite coatings were prepared on TA15 alloy by composite electroplating technology. The friction and wear behavior of TA15 alloy, and the coating were comparatively studied at both room temperature and 600 °C using GCr15 as the counterparts. The results show that the obtained coating is relatively dense and compact, and possesses higher micro-hardness than TA15 alloy. The coating has significant friction reduction effect sliding at 600 °C, but has no obvious friction reduction effect sliding at room temperature. The coating possesses superior wear resistance than TA15 alloy, evidenced by its much lower mass losses than those of TA15 alloy sliding at both room temperature and 600 °C. The TA15 alloy and the coating showed different wear mechanisms under the given sliding conditions.  相似文献   

18.
潘成刚  吴竹  丁紫正  常庆明 《表面技术》2017,46(12):110-117
目的研究Cu包SiC_p/Ni35激光熔覆层的显微组织、物相及其在25℃和600℃下的摩擦机理。方法采用化学镀的方法在SiC_p表面包覆一层Cu,并用激光熔覆的方法在H13钢表面制备了Cu包SiC_p增强Ni35熔覆层。用XRD、OM、SEM和EDS对熔覆层的物相、组织和成分进行了分析,用显微硬度计测试了熔覆层的显微硬度,用高温磨损试验机测试了熔覆层在常温、高温下的耐磨性能。结果熔覆层由基相γ-Ni(Fe)固溶体、增强相M7C3以及硼化物、硅化物和石墨构成。熔覆层的显微硬度和常温摩擦性能较H13钢显著提高,而其高温摩擦性能较H13钢基体提高较少。结论 SiC_p化学包覆Cu能减缓激光熔覆过程中SiC_p的分解,但分解速度还是过快。常温磨损时,高硬度碳化物和硅化物的覆层提高了材料的耐磨性能。高温下模具钢表面形成致密的氧化物薄膜,起到减磨降摩的作用,而高温下覆层无法形成致密氧化膜,导致其耐磨性能弱于常温。  相似文献   

19.
采用超音速大气等离子喷涂制备全包覆TiB2-SiC涂层,研究了TiB2-SiC涂层在400和800 ℃的氧化性能,并探究其氧化机理。对TiB2-SiC涂层在900 ℃下的抗铝熔盐腐蚀性能进行研究,并探讨其耐熔盐腐蚀机理。结果表明,超音速大气等离子喷涂制备的TiB2-SiC涂层具有良好的抗氧化性,在400 ℃的氧化速率常数为1.92×10-5 mg2·cm-4·s-1,在800 ℃的氧化速率常数为1.82×10-4 mg2·cm-4·s-1。超音速大气等离子喷涂制备的TiB2-SiC涂层在900 ℃下具有良好的抗熔盐腐蚀性能,熔盐腐蚀后TiB2-SiC涂层都保持致密结构,未发生涂层的开裂及剥落。  相似文献   

20.
TiCN coatings were grown by chemical vapor deposition (CVD) on WC-Co substrates with different Co contents, in order to control thermal stress. The driving force for the development of thermal stress is attributed to the difference between room and deposition temperature (ΔT ≈ −780 °C), and the mismatch of the coefficient of thermal expansion (CTE) between substrate and coating. Co contents of 6, 7.5, 10, 12.5, and 15 wt% were utilized to adjust the CTE of the substrate, and therefore tune the stress in TiCN coatings. Dilatometry of the substrates and high temperature X-ray diffraction of a powdered TiCN coating indicate a decreasing CTE-mismatch for increasing substrate Co contents. In consequence, residual stress in TiCN determined by X-ray diffraction increases up to 662 ± 8 MPa with decreasing Co contents down to 10 wt%. For Co contents below 10 wt%, the residual stress decreases. The formation of thermal crack networks in TiCN, analyzed by scanning electron microscopy, coincides with 10 wt% Co. Stress relaxation in TiCN coatings through the formation of thermal cracks becomes evident. A finite element simulation utilized for the calculation of residual stress distributions reveals shielding effects, which occur with the introduction of thermal cracks. Discrepancies between experimental and simulated thermo-elastic stresses imply the presence of secondary relaxation sources. High temperature residual stresses in TiCN, determined up to 1000 °C (i.e. above deposition temperature), suggest additional thermal crack formation for substrate Co contents of 6 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号