首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites based on thermoplastic polyurethane (TPU) and organically modified montmorillonite (OMMT) were prepared by melt blending. Organically modified nanoclay was added to the TPU matrix in order to study the influence of the organoclay on nanophase morphology and materials properties. The interaction between TPU matrix and nanofiller was studied by infrared spectroscopy. Morphological characterization of the nanocomposites was carried out using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy techniques. The results showed that melt mixing is an effective process for dispersing OMMT throughout the TPU matrix. Nanocomposites exhibit higher mechanical and thermal properties than pristine TPU. All these properties showed an increasing trend with the increase in OMMT content. Thermogravimetric analysis revealed that incorporation of organoclay enhances the thermal stability of nanocomposites significantly. Differential scanning calorimetry was used to measure the melting point and the glass transition temperature (Tg) of soft segments, which was found to shift toward higher temperature with the inclusion of organoclays. From dynamic mechanical thermal analysis, it is seen that addition of OMMT strongly influenced the storage and loss modulus of the TPU matrix. Dynamic viscoelastic properties of the nanocomposites were explored using rubber process analyzer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Polylactic acid (PLA)/organo‐montmorillonite (OMMT) nanocomposites toughened with thermoplastic polyurethane (TPU) were prepared by melt‐compounding on a novel vane extruder (VE), which generates global dynamic elongational flow. In this work, the mechanical properties of the PLA/TPU/OMMT nanocomposites were evaluated by tensile, flexural, and tensile tests. The wide‐angle X‐ray diffraction and transmission electron microscopy results show that PLA/TPU/OMMT nanocomposites had clear intercalation and/or exfoliation structures. Moreover, the particles morphology of nanocomposites with the addition of TPU was investigated using high‐resolution scanning electronic microscopy. The results indicate that the spherical TPU particles dispersed in the PLA matrix, and the uniformity decreased with increasing TPU content (≤30%). Interestingly, there existed abundant filaments among amount of TPU droplets in composites with 30 and 40 wt% TPU. Furthermore, the thermal properties of the nanocomposites were examined with differential scanning calorimeter and dynamic mechanical analysis. The elongation at break and impact strength of the PLA/OMMT nanocomposites were increased significantly after addition of TPU. Specially, Elongation at break increased by 30 times, and notched impact strength improved 15 times when TPU loading was 40 wt%, compared with the neat PLA. Overall, the modified PLA nanocomposites can have greater application as a biodegradable material with enhanced mechanical properties. POLYM. ENG. SCI., 54:2292–2300, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Zhenyang Yu  Shifeng Yan  Jia Ma 《Polymer》2007,48(21):6439-6447
New nanocomposites were prepared by melt blending poly(l-lactide) (PLLA), poly(?-caprolactone) (PCL), and organically modified montmorillonite (OMMT). The obtained nanocomposites showed enhanced tensile strength, modulus and elongation at break than that of PLLA/PCL blends. The dynamic mechanical analysis showed the increasing mechanical properties with temperature dependence of nanocomposites. Wide-angle X-ray diffraction analysis and transmission electron microscopy indicated that the material formed the nanostructure. Adding OMMT improved the thermal stability and crystalline abilities of nanocomposites. The morphology was investigated by environmental scanning electron microscopy, which showed that increasing content of OMMT reduces the domain size of phase-separated particles. The specific interaction between each polymer and OMMT was characterized by the Flory-Huggins interaction parameter, B, which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with OMMT than PCL.  相似文献   

4.
Ester‐based thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending at 190°C, using 3 wt% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement [TPU(C10A)]. The nanocomposites were subsequently melt‐blended with polypropylene (PP) using maleic anhydride–grafted polypropylene (MA‐g‐PP) as a compatibilizer [in the ratio of 70/30‐TPU/PP, 70/25/5‐TPU/PP/MA‐g‐PP, 70/25/5‐TPU (C10A)/PP/MA‐g‐PP]. Besides giving substantial increase in modulus, tensile strength, and other properties, organoclay reinforcement functions as a surface modifier for TPU hard segment resulting in improved dispersion. The morphology and other characteristics of the nanocomposite blends were investigated in terms of X‐ray diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile properties, scanning electron microscopy, and atomic force microscopy. The results indicate that the ester‐TPU(C10A)/PP/MA‐g‐PP exhibited better dispersion than other blend systems; abrasion resistance and water absorption resistance were also better for this system. POLYM. ENG. SCI., 50:1878–1886, 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
Abstract

Blends of thermoplastic polyurethane (TPU) and polypropylene (PP) are highly incompatible because of large differences in polarities and high interfacial tensions. On one hand, PP is added to TPU to improve TPU's thermal stability, chemical properties, mechanical properties (modulus, strength and hardness) and processing performance and to reduce TPU's cost. On the other hand, TPU is blended with PP to improve PP's properties (e.g. abrasion, flexibility, tear strength, shock absorbing capabilities, impact strength, adhesion and paintability/printability). Earlier works in polyurethane/organoclay nanocomposites, PP/organoclay nanocomposites and TPU/PP blends were studied. In our experimental work, both ester and ether based TPU nanocomposites were prepared by melt blending using 3?wt-% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement and blended with PP with/without PP-graft-maleic anhydride as the compatibiliser. Blends of nanoclay filled TPU/PP were evaluated for dynamic mechanical properties such as storage modulus E′, loss modulus E″ and dissipation factor tanδ.  相似文献   

6.
This article focuses on structural, thermal, and mechanical properties of nanocomposites in dependence of preparation method and poly(methyl mathacrylate) (PMMA)/organically modified montmorillonite (OMMT) ratio. PMMA/OMMT nanocomposites were prepared by bulk polymerization and by melt compounding. Properties of nanocomposites of the same composition prepared by the two methods were compared. It was observed that nanocomposites prepared via melt compounding at 200°C had a highly oriented structure with lower interlayer spacing values than nanocomposites prepared via bulk polymerization. Two reasons for the observed smaller interlayer spacing obtained by melt compounding were identified. The first is enhanced PMMA penetration and/or formation between layers in the case of bulk polymerization, which was confirmed by determination of stronger interactions between OMMT and PMMA by Soxhlet extraction, infrared spectroscopy, and differential dynamic calorimery. The second reason for smaller interlayer spacing for nanocomposites prepared by melt compounding is organic modifier degradation during melt compounding process, which was confirmed by thermogravimetric analysis. Both reasons lead to the fracture of melt compounded nanocomposites on the OMMT‐polymer interface, which was observed by scanning electron microscopy. For nanocomposites with disoriented structure and larger interlayer spacing prepared via bulk polymerization the fracture occurred in the polymer matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Polyester-based nanocomposites coatings were synthesized by the in situ polymerization with high speed homogenizer process at the various contents of organic modified montmorillonite (OMMT) to disperse into the polyester matrix. The dispersion state of organoclay was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The absence of reflection pattern of organoclay and TEM study revealed that organoclay was partially intercalated and exfoliated into the polymer matrix. Mechanical property of polyester-based nanocomposites coatings (PE/OMMT) improved the tensile strength and good formability at the deep drawing test. The viscoelastic behavior of PE/OMMT nanocomposites coatings was observed by dynamic mechanical analysis (DMA). When the content of organoclay was increased, the stiffness of the PE/OMMT nanocomposites coatings increased considerably and Tg of each cured coatings shifted to a lower temperature. Anti-corrosion property was examined by the salt spray test. CNC-3 had little rust after 600 h and it implies that nano-sized layered silicate of organoclay effectively increases the length of the diffusion pathways water molecules. And nano-sized layered silicate of organoclay might be decreased the permeability and could make higher corrosion resistance of PE/OMMT nanocomposites coatings. From those results, CNC-3 had good formability in the deep drawing and also had good anti-corrosion property. So, CNC-3 would be an appropriate coating for automotive pre-coated metal.  相似文献   

8.
The pristine sodium montmorillonite (MMT) was organically modified with hexadecyltrimethylammonium bromide (HTAB) at different contents. The organoclay was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, energy dispersive X‐ray techniques, and thermogravimetric analysis. Then, poly(butylene succinate) (PBS) nanocomposites were prepared by melt‐mixing process using maleic anhydride‐grafted PBS (PBS‐g‐MA) as compatibilizer. It was found that the mechanical properties of PBS nanocomposites filled with organoclay were apparently higher than that of the nanocomposite filled with MMT. This is attributed to the better filler–matrix interactions between PBS and the organoclay and the better filler dispersion. This is verifiable through the XRD, scanning electron microscopy, and transmission electron microscopy. The addition of PBS‐g‐MA further improved the mechanical properties. It was also found that our laboratory synthesized organoclay modified with HTAB has provided a better reinforcing efficiency when compared with the commercial octadecylamine‐modified organoclay. Besides that the thermal properties of PBS nanocomposites were studied through differential scanning calorimetry. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
F. Chavarria 《Polymer》2006,47(22):7760-7773
A series of alkyl ammonium/MMT organoclays were carefully selected to explore structure-property relationships for thermoplastic polyurethane (TPU) nanocomposites prepared by melt processing. Each organoclay was melt-blended with a medium-hardness, ester-based TPU, while a more limited number of organoclays was blended with a high-hardness, ether-based TPU. Wide-angle X-ray scattering, transmission electron microscopy, particle analysis, and stress-strain behavior were used to examine the effects of organoclay structure and TPU chemical structure on morphology and mechanical properties. Specifically, the following were observed: (a) one long alkyl tail on the ammonium ion rather than two, (b) hydroxy ethyl groups on the amine rather than methyl groups, and (c) a longer alkyl tail as opposed to a shorter one leads to higher clay dispersion and stiffness for medium-hardness TPU nanocomposites. Overall, the organoclay containing hydroxy ethyl functional groups produces the best dispersion of organoclay particles and the highest matrix reinforcement, while the one containing two alkyl tails produces the poorest. The two TPU's exhibit similar trends with regard to the effect of organoclay structure. The high-hardness TPU nanocomposites showed a slightly higher number of particles and clay dispersion. The organoclay structure trends are analogous to what has been observed for nylon 6-based nanocomposites; this suggests that polar polymers like polyamides, and apparently polyurethanes, have a relatively good affinity for the polar clay surface; and in the case of polyurethanes, the high affinity of the matrix for the hydroxy ethyl functional groups in the organoclay aids clay dispersion and exfoliation.  相似文献   

10.
In this study, novel polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS)/thermoplastic polyurethane (TPU)/organo-modified montmorillonites (OMMT) nanocomposites were prepared by melt mixing. Three different organo-modified montmorillonites, DK2, DK3, and DK4 (listed in descending order of hydrophilicity) were selected. The compatibilizing and reinforcing effects of OMMT on the structure, morphology, thermal stability, mechanical and rheological properties of the SEBS/TPU blends were studied. It was found that the hydrophilic DK2 nanoparticles were largely located in the continuous TPU phase and partially dispersed at the phase interphase, whereas DK3 and DK4 nanoparticles were preferentially located at the phase interface with an intercalated/exfoliated and intercalated structure, respectively. Scanning electron microscopy (SEM) results showed that SEBS/TPU/OMMT nanocomposites exhibited a more densely organized and interconnected structure compared with SEBS/TPU blends. Better thermal property was achieved after adding DK3, with the tensile properties of the SEBS/TPU increased considerably. Rheological analysis revealed that hydrophilic DK2 nanoparticles were more effective in improving rheology properties and showed a more pronounced nonlinear effect. The prepared SEBS/TPU/OMMT nanocomposites displayed desired thermal, mechanical and rheological properties, which are important for many applications. POLYM. ENG. SCI., 60:850–859, 2020. © 2020 Society of Plastics Engineers  相似文献   

11.
The effect of organically modified clay on the morphology and properties of poly(propylene) (PP) and poly[(butylene succinate)‐co‐adipate] (PBSA) blends is studied. Virgin and organoclay modified blends were prepared by melt‐mixing of PP, PBSA and organoclay in a batch‐mixer at 190 °C. Scanning electron microscopy studies revealed a significant change in morphology of PP/PBSA blend in the presence of organoclay. The state of dispersion of silicate layers in the blend matrix was characterized by X‐ray diffraction and transmission electron microscopic observations. Dynamic mechanical analysis showed substantial improvement in flexural storage modulus of organoclay‐modified blends with respect to the neat polymer matrices or unmodified blends. Tensile properties of virgin blends also improved in the presence of organoclay. Thermal stability of virgin blends in air atmosphere dramatically improved after modification with organoclay. The effect of organoclay on the melt‐state liner viscoelastic properties of virgin blends was also studied. The non‐isothermal crystallization behavior of homopolymers, virgin, and organoclay‐modified blends were studied by differential scanning calorimeter. The effect of incorporation of organoclay on the cold crystallization behavior of PP/PBSA blends is also reported.

  相似文献   


12.
The preparation of ultra‐high‐molecular weight polyethylene (UHMWPE)/organoclay nanocomposites by continuous elongational flow technique was investigated in a novel eccentric rotor extruder (ERE). The distribution and dispersion morphologies of organo‐modified montmorillonite (OMMT) layers were revealed and observed by ash determination, wide angle X‐ray diffraction and transmission electron microscopy. The thermal and thermal‐mechanical behaviors were characterized by differential scanning calorimeter, thermal gravimetric analysis and dynamic mechanical thermal analysis. The mechanical performances was measured by tensile and impact test. The morphologies of the nanocomposites evidenced that the OMMT layers can be well intercalated or/and exfoliated by UHMWPE matrix, then the fabrication mechanism of intercalated and exfoliated OMMT structures under continuous elongational flow was discussed. The ideal dispersion of OMMT in UHMWPE matrix obviously improved the crystallinity and the mechanical properties at a certain concentration of OMMT loading, indicating that the lower OMMT addition can lead an effective strengthening and toughening for UHMWPE. POLYM. ENG. SCI., 59:547–554, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Summary: Poly(butylene succinate‐co‐adipate) (PBSA) and organically modified montmorillonite (OMMT) nanocomposites of three different compositions were prepared by melt‐extrusion in a batch mixer. The structure of the nanocomposites was studied using X‐ray diffraction (XRD) and transmission electron microscopy (TEM) that revealed a coexistence of exfoliated and intercalated silicate layers dispersed in the PBSA matrix, regardless of the silicate loading. The degree of crystallinity of PBSA decreases with the addition of OMMT platelets. Dynamic mechanical analysis revealed remarkable increase in flexural storage modulus when compared with that of neat PBSA. Tensile property measurements exhibit substantial increase in stiffness with simultaneous increase in elongation at break of nanocomposites as compared to that of neat PBSA. The effect of clay loading on the melt‐state linear viscoelastic behavior of mixed intercalated/exfoliated nanocomposites was also investigated.

Elongation at break of compression molded annealed samples of neat PBSA and various PBSACNs.  相似文献   


14.
Blends of organically modified montmorillonite (OMMT) with poly(ethylene terephtalate) (PET) waste and poly(methyl methacrylate) (PMMA) were prepared by melt mixing. The morphology of PET/PMMA nanocomposites with different OMMT contents was characterized by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The nonisothermal crystallization temperatures of nanocomposites were also examined by DSC. TEM observations and XRD patterns revealed that silicate layers were intercalated and well dispersed in the blend. Nanocomposites displayed better mechanical properties when compared with the unfilled blend. DMA analyses also showed efficient mixing of the two immiscible polymers and changes in glass transition temperature with the presence of OMMT. DSC analysis showed an enhancement in crystallization rate of nanocomposites and a decrease in cristallinity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Poly(lactic acid) (PLA) nanocomposites were prepared by melt mixing technique in a Haake batch mixer. The clay dispersion within the PLA matrix during melt mixing was well explained through the morphological characterization. Morphological characterizations were studied by X‐ray diffraction and transmission electron microscopy. The exfoliation/intercalation of the clay particles within the polymer matrix during melt mixing depends on the mixing torque generated during the preparation of nanocomposites. The significance of processing temperature and the mixing time in melt mixing were studied for PLA/C93A and PLA/C30B nanocomposites. The structure and properties of the nanocomposites were also characterized by differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and mechanical properties by standard tensile testing. The incorporation of nanoclays into the PLA matrix enhanced the mechanical properties and thermal stability of the PLA nanocomposites. This may be due to the reinforcing effect of nanoclays within the polymer matrix. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
In this study, samples of thermoplastic polyurethane (TPU) were synthesized by reactive processing in an instrumented batch mixer with 0, 1, 2, 5, and 10 wt % of organophilic montmorillonite (OMMT) clay. Fourier transform infrared spectroscopy confirmed the obtainment of TPU. Transmission electron microscopy showed several types of clay dispersion. Analysis by X‐ray diffraction revealed modifications in the TPU microstructure, a reduction in the degree of crystallinity, and an increase in the crystal size. Dynamic mechanical properties showed that the incorporation of OMMT has a strong influence on the storage and loss moduli obtained for the TPU matrix. The incorporation of OMMT also altered the crystallization and thermal stability of the TPU. With the use of the Flynn–Wall–Ozawa method it was observed that the nanoclay had a higher apparent activation energy. The results obtained applying the Criado method indicated that the solid state reaction is essentially controlled by geometric contraction, random nucleation with one nucleus for each individual particle and diffusion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42640.  相似文献   

18.
Polymer nanocomposites (PNs) based on an amorphous polyamide (aPA) modified with both a maleated rubber (mSEBS) for toughening, and with an organically modified organoclay for stiffening were obtained in the melt state. The PNs were highly dispersed and the organoclay was exclusively located in the aPA matrix. However, they showed a fine particle size that was larger than that of the corresponding blends. This indicates a lower compatibilization in the PNs that was attributed to a slight surfactant migration to the matrix during processing in the melt state. The increases in the modulus of elasticity upon organoclay (OMMT) addition were high enough to counteract the modulus decrease inherent to a 15% rubber addition. This allowed us to obtain a toughened aPA with a modulus similar to that of the unmodified aPA. The critical interparticle distance was lower in the PNs than in the corresponding blends. This decrease was attributed to the higher modulus of elasticity of the PNs matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Suprakas Sinha Ray  Mosto Bousmina   《Polymer》2005,46(26):12430-12439
Poly(butylene succinate-co-adipate) (PBSA)/layered silicate nanocomposites were prepared by melt extrusion of PBSA and three different types of commercially available organically modified montmorillonite (OMMT). Using three types of OMMT modified with three different kinds of surfactants, the effect of organic modification on nanocomposites was investigated by focusing of three major aspects: morphological study, property measurements, and melt rheological behavior under both small and large deformation flows. X-ray diffraction (XRD) patterns revealed that increasing the level of interactions (miscibility) between the organic modifier and PBSA matrix increases the tendency of the silicate layers to delaminate and distributed nicely within the PBSA matrix. Transmission electron micrographic (TEM) observations showed that the ordering of silicate layers in PBSA matrix is well matched with the XRD patterns. Thermal analysis revealed that extent of crystallinity of PBSA matrix is directly related to the extent of exfoliation of silicate layers in the nanocomposites. Dynamic mechanical analysis and tensile property measurements showed concurrent improvement in mechanical properties when compared to the neat PBSA and the extent of improvement is directly related to the extent of delamination of silicate layers in the PBSA matrix. The same tendency was also observed in melt rheological measurements.  相似文献   

20.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号