首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Au–Pt bimetallic nanoparticles (NPs) were synthesized by a seeded growth method. Au NPs with different sizes were obtained by reducing HAuCl4 with butyllithium, and AuPt bimetallic NPs were synthesized by reducing H2PtCl6 with oleylamine using the pre-synthesized Au NPs as seeds. The size of Au seeds was found to be a key factor on the structure of Au–Pt bimetallic NPs. Using big Au NP seeds (8 nm or 12 nm) resulted in the formation of Au–Pt dendritic structures. While relatively small Au NPs (3 nm) were used as seeds, the fast atomic diffusion inside relatively small bimetallic NPs will result in an Au–Pt alloy formation.  相似文献   

2.
A sample of Fe2O3-doped 4MgH2-Li3AlH6 composite was prepared by the ball milling technique, and the hydrogen storage properties were investigated for the first time. Results showed that the addition of Fe2O3 powder reduced the decomposition temperature and improved de/hydrogenation kinetics compared with undoped 4MgH2-Li3AlH6. The onset decomposition temperature for the Fe2O3-doped 4MgH2-Li3AlH6 composite decreased by 75 °C compared with that of the undoped composite. For the sorption kinetics, a hydrogen absorption capacity of 2.4 wt% was reached after 60 min in the 10 wt% Fe2O3-doped 4MgH2-Li3AlH6 composite, whereas the neat composite absorbed 2.3 wt% hydrogen under the same conditions. For desorption kinetics, the Fe2O3-doped 4MgH2-Li3AlH6 sample released 2.5 wt% hydrogen under 10 min of dehydrogenation, but the neat 4MgH2-Li3AlH6 composite only desorbed 2.0 wt% hydrogen within the same period. The apparent activation energy calculated by Kissinger analysis for hydrogen desorption decreased to 112.9 kJ/mol after Fe2O3 was added compared with the undoped composite, which was 145.4 kJ/mol. The X-ray diffraction analysis shows the formation new phase of Li2Fe3O4 in the doped sample after ball milling processes that could act as the real catalyst in the Fe2O3-doped 4MgH2-Li3AlH6 composite.  相似文献   

3.
Core–shell structure of Fe3O4/Ag/polypyrrole (PPy) nano-particles (NPs) was prepared by a facile method through the redox reaction of silver nitrate and pyrrole in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The presence of PVP has an effect on the morphology and structure of the Fe3O4/Ag/PPy NPs. Rod-shaped Fe3O4/Ag/PPy NPs were obtained with the increase of the concentration of PVP to 0.125 mM, in which the wire-like core was formed by the aggregation of Fe3O4 and Ag nanoparticles. At the same time, the PPy shell of the NPs became more uniform and thicker with the increase of the concentrations of PVP and AgNO3 in the solution. The electric conductivity of the NPs can be enhanced to 335 ± 8 S/cm by incorporation of the Ag into the NPs. At the same time, the thickness of the PPy shell affects the electric conductivity of the samples. All the NPs in the present work exhibit superparamagnetic behavior.  相似文献   

4.
The purpose of this research was to synthesize amino modified Fe3O4/SiO2 nanoshells for biomedical applications. Magnetic iron-oxide nanoparticles (NPs) were prepared via co-precipitation. The NPs were then modified with a thin layer of amorphous silica. The particle surface was then terminated with amine groups. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g? 1 for uncoated Fe3O4 NPs and it increased to about 208 m2 g?1 for 3-aminopropyltriethoxysilane (APTS) coated Fe3O4/SiO2 NPs. The total thickness and the structure of core-shell was measured and studied by transmission electron microscopy (TEM). For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of (80–100) emu g?1 and coercivity of (80–120) Oe for particles between (35–96) nm, respectively. The Fe3O4/SiO2 NPs with 50 nm as particle size, demonstrated a magnetization value of 30 emu g?1. The stable magnetic fluid contained well-dispersed Fe3O4/SiO2/APTS nanoshells which indicated monodispersity and fast magnetic response.  相似文献   

5.
Epoxy nanocomposite (ENC) reinforced with Fe2O3 nanoparticles (NPs) has been prepared. The surface properties of Fe2O3 NPs were turned using poly(N-vinyl-2-pyrrolidone) (PVP) and (3-aminopropyl) triethoxysilane (APTES) as modified agent. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) tests revealed that PVP and APTES have been successfully grafted to the surface of Fe2O3 NPs. The modified Fe2O3 NPs were monodisperse in epoxy matrix as determined using transmission electron microscopy (TEM). FTIR measurements for ENCs indicated that modified Fe2O3 NPs were covalently incorporated into epoxy networks. A disproportionate increase in mechanical properties of the obtained ENCs was observed with the increased modified Fe2O3 NPs loading. When 4 wt.% modified Fe2O3 NPs were introduced, the tensile strength was increased by 50.2% and the fracture toughness, which expressed as stress intensity factor (KIC), was significantly increased by 106% based on single-edge notch bend test.  相似文献   

6.
The g-C3N4/Fe3O4/Ag/Ag2SO3 nanocomposites have been successfully fabricated by facile refluxing method. The as-obtained products were characterized by XRD, EDX, SEM, TEM, UV–vis DRS, FT–IR, TGA, PL, and VSM techniques. The results suggest that the Ag/Ag2SO3 nanoparticles have anchored on the surface of g-C3N4/Fe3O4 nanocomposite, showing strong absorption in the visible region. The evaluation of photocatalytic activity indicates that for the g-C3N4/Fe3O4/Ag/Ag2SO3 (40%) nanocomposite, the degradation rate constant was 188 × 10?4 min?1 for rhodamine B, exceeding those of the g-C3N4 (16.0 × 10?4 min?1) and g-C3N4/Fe3O4 (20.2 × 10?4 min?1) by factors of 11.7 and 9.3, respectively. The results showed that the nanocomposite prepared by refluxing for 120 min has the superior photocatalytic activity and its activity decreased with rising the calcination temperature. The trapping experiments confirmed that superoxide ion radical was the main active species in the photocatalytic degradation process. Also, it was demonstrated that the magnetic photocatalyst has considerable activity in degradation of one more dye pollutant. Finally, the reusability of the photocatalyst was evaluated by five consecutive catalytic runs. This work may open up new insights into the utilization of magnetically separable nanocomposites and provide new opportunities for facile fabrication of g-C3N4-based plasmonic photocatalysts.  相似文献   

7.
The synthesis of magnetic NiFe2O4@AlMCM-41-Cu2O core-shell as a new class of visible light driven photocatalyst was suggested. The magnetic NiFe2O4 core was prepared by solvothermal method. The intermediate AlMCM-41 shell was prepared by the method of liquid crystal templating mechanism and subsequently cuprous oxide (Cu2O) nanoparticles (NPs) were synthesized in NiFe2O4@AlMCM-41core-shell via colloidal chemistry approach. The properties of prepared magnetic core-shell were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption–desorption measurement and vibration sample magnetometer (VSM). Based on EDX results, the weight percentage (wt%) of NiFe2O4 core, MCM-41 shell and Cu2O NPs were calculated to be 68.89, 30.55 and 0.56%, respectively. It consisted of mesoporous structure with a surface area of 687.00 m2 g?1, an average pore size of 2.95 nm and possessed excellent magnetic properties of 4.74 emu g?1. The TEM results indicated that the NiFe2O4 as core were regular spheres with diameter of 68 nm, and the average thickness of AlMCM-41 shells was ~35 nm. The particles size of Cu2O incorporated in core-shell was less than 5 nm. The photocatalytic activity was evaluated under visible light irradiation using the removal of methylene blue (MB) dye as a model reaction. The removal rate of MB achieved up to 90% after 60 min under visible light irradiation, and the NiFe2O4@AlMCM-41-Cu2O can be recycled and reused.  相似文献   

8.
Magnetic nanoparticles (Fe3O4) coated with polyethylene glycol (PEG), (Fe3O4/PEG), were synthesized by chemical co-precipitation of Fe2+/Fe3+ salts by aqueous ammonia in PEG solution. Radiation polymerization of 2-hydroxyethyl methacrylate (HEMA) monomer solution onto Fe3O4/PEG was performed at different doses to synthesize (Fe3O4/PEG)-pHEMA, namely FPH, nanocomposites. Properties of FPH nanocomposites were characterized by FT-IR, XRD, SEM, TEM, DLS, ESR and TGA techniques. The XRD of FPH nanocomposites showed all the peaks of Fe3O4 nanoparticles. SEM was used to assess the surface morphology of FPH. TEM showed that the average diameter of FPH nanocomposites was in the range of 9–40 nm. The thermal stability of FPH nanocomposites was higher than that of Fe3O4 and Fe3O4/PEG. Radio-labeling of (Fe3O4/PEG)-pHEMA nanocomposite irradiated at 10 kGy (FPH10) with 99mTc was performed using stannous chloride as reducing agent. Factors affecting the labeling yield (%) such as the substrate amount, the amount of reducing agent, the pH of reaction medium, the reaction time and the reaction temperature were investigated. The maximum labeling yield was 93% using 0.25 mg of FPH10 at pH 6 and 20 min reaction time. The biodistribution study of 99mTc-FPH10 was examined on two groups of ascites and solid tumor bearing mice. The biodistribution results referred that 99mTc-FPH10 was rapidly uptake in tumor sites ascites or solid tumors. The results indicated that FPH nanocomposites could be potentially used for tumor imaging and therapy.  相似文献   

9.
Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4@silica@Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10? 9 mol·cm? 2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s? 1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM? 1 cm? 2 and fast response (less than 5 s).  相似文献   

10.
Solid-state reaction method is a common and effective technique to synthesize ferrites. This work investigated the phase transformation of MnO2 and Fe2O3 system roasted at 500–1400 °C in air atmosphere to understand the formation process of manganese ferrite. The results showed that the formation of manganese ferrite (MnxFe3?xO4) was derived from the reaction between Fe2O3 and Mn3O4 (the decomposition product of MnO2). Below 900 °C, MnO2 firstly decomposed to Mn2O3 and then to Mn3O4, and Fe2O3 was seldom reacted with Mn2O3 and Mn3O4. When the temperature went up to 1000 °C, Fe2O3 easily reacted with Mn3O4 to generate manganese ferrite. The reaction degree was enhanced dramatically with the rising of temperature. Moreover, the x value in the MnxFe3?xO4 increased from 0 to 1 from 900 °C to 1400 °C. In other words, the higher the temperature was, the closer the MnxFe3?xO4 was to MnFe2O4. Thermodynamic analysis of MnO2-Fe2O3 system under different O2 partial pressures was carried out to further explain the formation mechanism.  相似文献   

11.
Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co2 +. The resulting Fe3O4/Au–ANTA–Co2 + nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co2 + ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au–ANTA–Co2 + nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au–ANTA–Co2 + nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate.  相似文献   

12.
Polyethylenimine (PEI) modified Fe3O4/Au nanoparticles were synthesized in aqueous solution and characterized by photo correlation spectroscopy (PCS) and vibrating sample magnetometer (VSM). The so-obtained Fe3O4/Au-PEI nanoparticles were capable of efficient electrostatic capture of DNA. The maximum amount of genomic DNA captured on 1.0 mg Fe3O4/Au-PEI nanoparticles was 90 μg. The DNA release behavior was studied and the DNA recovery from Fe3O4/Au-PEI nanoparticles approached 100% under optimal conditions. DNA extraction from mammalian cells using Fe3O4/Au-PEI nanoparticles was successfully performed. Up to approximately 43.1 μg of high-purity (OD260/OD280 ratio = 1.81) genomic DNA was extracted from 10 mg of liver tissue. The results indicated that the prepared Fe3O4/Au-PEI nanoparticles could be successfully used for DNA capture and release.  相似文献   

13.
Several nanoporous Fe_2 O_3-xSx/S-doped g-C_3 N_4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe_2O_3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe_2 O_3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe_2 O_3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe_2 O_3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe_2 O_3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min~(-1) which was faster than those of the pure Fe_2 O_3(0.0016 min~(-1))and CNS(0.0044 min~(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe_2 O_3(6.6)/CNS hybrid are 33.5 m~2/g and0.195 cm~3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe_2 O_3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O_2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe_2 O_3(6.6)/CNS heterojunction between CNS and Fe_2 O_3 directly produces ·OH as well as ·O_2-radicals which is consistent with the results obtained from trapping experiments.  相似文献   

14.
The structural changes of MnO2, Fe2O3 and graphite under separate and joint mechanical activation in high-energy planetary ball mill were studied by X-ray diffraction analysis, Raman spectroscopy and chemical analysis. Separate mechanical processing resulted in nanostructured states of MnO2, Fe2O3 and graphite with the size of coherent scattering regions of 25, 12 and 6 nm, respectively, and the average particle size of 15–20 nm. Along with nanoparticles of globular shape, Fe2O3 nanorods were found to be formed during separate milling. No mechanochemical effect was found after separate milling. Under joint mechanical activation of nanostructured manganese and iron oxides with graphite, phase transformations toward less stable forms of oxides (Mn2O3, Mn3O4, Fe3O4) were found. When co-milled with α-Fe2O3, graphite was found to exfoliate to graphene layers. The graphite phase remained under the combined mechanical activation with MnO2. Dynamic recrystallization of α-Fe2O3 phase also proceeded during joint mechanical activation of nanostructured Fe2O3 and graphite.  相似文献   

15.
《Materials Research Bulletin》2006,41(6):1192-1198
Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl3·H2O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 μm with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products’ crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe2O3 for the destruction of diethyl phthalate in water was carried out. The result proved that Fe2O3 hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min.  相似文献   

16.
In this study, a series of novel quaternary g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites were fabricated. The prepared nanocomposites were characterized by XRD, EDX, SEM, TEM, UV-DRS, FT-IR, PL, TG, and VSM methods to gain insight about structure, purity, morphology, optical, thermal, and magnetic properties. Photocatalytic activity of the samples was investigated under visible-light irradiation by degradations of rhodamine B, methylene blue, methyl orange, and phenol as four organic pollutants. The highest photocatalytic degradation efficiency was observed when the sample calcined at 300 °C for 2 h with 20 wt% of Co3O4. The photocatalytic activity of this nanocomposite is almost 16.8, 15.7, 4.6, and 5.1 times higher than those of the g-C3N4, g-C3N4/Fe3O4, g-C3N4/Fe3O4/Ag3PO4 (20%), and g-C3N4/Fe3O4/Co3O4 (20%) samples in photodegradation of rhodamine B, respectively. Finally, on the basis of the energy band positions, the mechanism of enhanced photocatalytic activity was discussed.  相似文献   

17.
Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles as a novel organic–inorganic hybrid heterogeneous catalyst was fabricated and characterized by XRD, FT-IR, TGA, TEM and VSM techniques. Composition was determined as Fe3O4, while particles were observed to have spherical morphology. Size estimations using X-ray line profile fitting (10 nm), TEM (11 nm) and magnetization fitting (9 nm) agree well, revealing nearly single crystalline character of Fe3O4 nanoparticles. Magnetization measurements reveal that PPCA functionalized Fe3O4 NPs have superparamagnetic features, namely immeasurable coercivity and absence of saturation. Small coercivity is established at low temperatures. The catalytic activity of Fe3O4–PPCA was probed through one-pot synthesis of nitro alkenes through Knoevenagel reaction in CH2Cl2 at room temperature. The heterogeneous catalyst showed very high conversion rates (97%) and could be recovered easily and reused many times without significant loss of its catalytic activity.  相似文献   

18.
A bio-directed synthesis of gold nanoparticles (Au NPs) was developed via the reduction of hydrogen tetrachloroaurate (III) (HAuCl4·3H2O) solution by the aqueous leaf extract of Ananas comosus. The polyphenol stabilized Au NPs were characterized by UV–visible, Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD)/selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The HRTEM images revealed that Au NPs were well dispersed with spherical structures. The size ranges from 7.39 to 32.09 nm with average particle size of 18.85 ± 6.74 nm. The peaks of XRD analysis at (2θ) 37.96°, 44.06°, 64.54°, 77.50° and 81.73° were respectively assigned to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes of the face-centered cubic (fcc) lattice of gold. The photocatalytic potential of Au NPs was studied through the solid-phase degradation of low-density polyethylene (LDPE) film. The photoinduced degradation of LDPE@Au nanocomposite film was higher than that of the pure LDPE film. The weight loss of LDPE@Au (1.0 wt%) nanocomposite film steadily increased and reached 51.4 ± 4.8% in 240 h under solar light irradiation, compared to the photo-induced LDPE with only 8.6 ± 0.7%. However, LDPE film with 1.0% Au NPs gave a weight loss value of 4.72 ± 0.71 under the dark condition at the end of 240 h. Thus, LDPE film with 1.0% Au NPs showed a degradation efficiency of 90.8% under solar irradiation after 240 h. The sustainability of the nanoparticles was confirmed through reusability in the photocatalytic degradation reaction up to five consecutive cycles without substantial loss in its catalytic performance.  相似文献   

19.
Samples Mg–14Ni–6Fe2O3, Mg–14Ni–3Fe2O3–3Ti, and Mg–14Ni–2Fe2O3–2Ti–2Fe were prepared by reactive mechanical grinding, and their hydrogen storage properties were examined. The activated Mg–14Ni–2Fe2O3–2Ti–2Fe had the highest hydriding rate, absorbing 4.14 wt% H for 5 min, and 4.27 wt% H for 10 min, and 4.42 wt% H for 60 min at 573 K under 12 bar H2. The activated Mg–14Ni–3Fe2O3–3Ti had the highest dehydriding rate, desorbing 3.81 wt% H for 20 min, 3.98 wt% H for 25 min, and 4.15 wt% H for 60 min. Mg–14Ni–6Fe2O3 dehydrided at n = 4 contained Mg, Mg2Ni, MgO, and Mg(OH)2. Mg(OH)2 is considered to be formed by the reactions of MgH2 or Mg with water vapor. The effects of reactive mechanical grinding and hydriding–dehydriding cycling are the creation of defects and cracks, and the reduction of Mg particle size. The addition of a larger amount of Ti and/or Fe has stronger effects of reactive mechanical grinding, whereas the addition of a larger amount of Fe2O3 has greater effects of hydriding–dehydriding cycling.  相似文献   

20.
Cobalt-oxide nanoparticles (NPs) were fabricated using Punica granatum peel extract from cobalt nitrate hexahydrate at low temperature. The synthesized cobalt-oxide NPs were characterized using X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray, atomic force microscopy, fourier transform infrared spectroscopy and UV-visible techniques. The cobalt-oxide NPs were in highly uniform shape and size was in the size of 40–80 nm. Photo-catalytic activity (PCA) of the synthesized NPs was evaluated by degrading Remazol Brilliant Orange 3R (RBO 3R) dye and a degradation of 78.45% was achieved (dye conc. 150 mg/L) using 0.5 g cobalt-oxide NPs for 50 min irradiation time. In view of eco-benign and cost-effective nature, the present investigation revealed that P. granatum could be used for the synthesis of cobalt-oxide NPs for photo-catalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号